Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import numpy as np
- import matplotlib.pyplot as plt
- try:
- from scipy import misc
- except ImportError:
- !pip install scipy
- from scipy import misc
- training_size = 300
- img_size = 20*20*3
- training_data = np.empty(shape=(training_size,20,20,3))
- import glob
- i = 0
- for filename in glob.glob('D:/Minutia/PrincipleWrinkleMinutia/*.jpg'):
- image = misc.imread(filename)
- training_data[i] = image
- i+=1
- print(training_data[0].shape)
- a= [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]
- from sklearn.preprocessing import OneHotEncoder
- a = np.asarray(a)
- b = OneHotEncoder(sparse=False).fit_transform(a.reshape(-1, 1))
- #b = tf.one_hot(a,3)
- #sess = tf.Session()
- #sess.run(b)
- import tensorflow as tf
- tf.reset_default_graph()
- from __future__ import division, print_function, absolute_import
- import tflearn
- from tflearn.layers.core import input_data, dropout, fully_connected
- from tflearn.layers.conv import conv_2d, max_pool_2d
- from tflearn.layers.normalization import local_response_normalization
- from tflearn.layers.estimator import regression
- network = input_data(shape=[None, 20, 20, 3])
- network = conv_2d(network, 96, 11, strides=4, activation='relu')
- network = max_pool_2d(network, 3, strides=2)
- network = local_response_normalization(network)
- network = fully_connected(network, 4096, activation='tanh')
- network = dropout(network, 0.5)
- network = fully_connected(network, 3, activation='softmax')
- from __future__ import division, print_function, absolute_import
- import tflearn
- from tflearn.layers.core import input_data, dropout, fully_connected
- from tflearn.layers.conv import conv_2d, max_pool_2d
- from tflearn.layers.normalization import local_response_normalization
- from tflearn.layers.estimator import regression
- network = input_data(shape=[None, 20, 20, 3])
- network = conv_2d(network, 96, 11, strides=4, activation='relu')
- network = max_pool_2d(network, 3, strides=2)
- network = local_response_normalization(network)
- network = conv_2d(network, 256, 5, activation='relu')
- network = max_pool_2d(network, 3, strides=2)
- network = local_response_normalization(network)
- network = conv_2d(network, 384, 3, activation='relu')
- network = conv_2d(network, 384, 3, activation='relu')
- network = conv_2d(network, 256, 3, activation='relu')
- network = max_pool_2d(network, 3, strides=2)
- network = local_response_normalization(network)
- network = fully_connected(network, 4096, activation='tanh')
- network = dropout(network, 0.5)
- network = fully_connected(network, 4096, activation='tanh')
- network = dropout(network, 0.5)
- network = fully_connected(network, 3, activation='softmax')
- network = regression(network, optimizer='momentum',
- loss='categorical_crossentropy',
- learning_rate=0.001)
- model = tflearn.DNN(network, checkpoint_path='model_alexnet',
- max_checkpoints=1, tensorboard_verbose=2)
- model.fit(training_data, a, n_epoch=1000,validation_set=0.1, shuffle=True,
- show_metric=True, batch_size=64, snapshot_step=200,
- snapshot_epoch=False, run_id='alexnet_oxflowers17')
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement