Ledger Nano X - The secure hardware wallet
SHARE
TWEET

reference

a guest Jun 28th, 2018 21 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. References:
  2.  
  3. Maillé P., Reichl P., Tuffin B. (2011) Interplay between Security Providers, Consumers, and Attackers: A Weighted Congestion Game Approach. In: Baras J.S., Katz J., Altman E. (eds) Decision and Game Theory for Security. GameSec 2011. Lecture Notes in Computer Science, vol 7037. Springer, Berlin, Heidelberg
  4.  
  5.  
  6. Alpcan, T., Ba¸ sar, T.: Network Security: A Decision and Game Theoretic Approach. Cambridge University Press (2011)
  7.  
  8.  
  9. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Yale University Press, New Heaven (1956)
  10.  
  11.  
  12. Berge, C.: Espaces topologiques. Fonctions multivoques, Collection Universitaire de Math´ ematiques, Dunod, Paris, vol. III (1959)
  13. Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 17–28. Springer, Heidelberg (2010)
  14.  
  15.  
  16. Bistarelli, S., Dall’Aglio, M., Peretti, P.: Strategic Games on Defense Trees. In: Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 1–15. Springer, Heidelberg (2007)
  17.  
  18.  
  19. Bohacek, N., Hespanha, J.P., Lee, J., Lim, C., Obraczka, K.: Game theoretic stochastic routing for fault tolerance and security in computer networks. IEEE Transactions on Parallel and Distributed Systems 18(9), 1227–1240 (2007)
  20.  
  21.  
  22. Correa, J.R., Schulz, A.S., Stier-Moses, N.: A geometric approach to the price of anarchy in nonatomic congestion games. Games and Economic Behavior 64(2), 457–469 (2008)
  23.  
  24.  
  25. Cremonini, M., Nizovtsev, D.: Understanding and influencing attackers’ decisions: Implications for security investment strategies. In: Proc. of 5th Workshop on the Economics of Information Security (WEIS), Cambridge, UK (2006) 86 P. Maill´ e, P. Reichl, and B. Tuffin
  26.  
  27.  
  28. Fudenberg, D., Maskin, E.: The folk theorem in repeated games with discounting or with incomplete information. Econometrica 54(3), 533–554 (1986)
  29.  
  30.  
  31. Fudenberg, D., Tirole, J.: Game Theory. MIT Press (1991)
  32.  
  33.  
  34. Ganesh, A., Gunawardena, D., Jey, P., Massouli´ e, L., Scott, J.: Efficient quarantining of scanning worms: Optimal detection and co-ordination. In: Proc. of IEEE INFOCOM 2006, Barcelona, Spain (2006)
  35.  
  36.  
  37. Jiang, L., Anantharam, V., Walrand, J.: Efficiency of selfish investments in network security. In: Proc. of 3rd Workshop on the Economics of Networks, Systems, and Computation, Seattle, WA, USA (2008)
  38.  
  39.  
  40. Johari, R., Weintraub, G.Y., Van Roy, B.: Investment and market structure in industries with congestion. Operations Research 58(5), 1303–1317 (2010)
  41.  
  42.  
  43. Karakostas, G., Kolliopoulos, S.G.: Edge pricing of multicommodity networks for heterogeneous selfish users. In: Proc. of FOCS, pp. 268–276 (2004)
  44.  
  45.  
  46. Kodialam, M., Lakshman, T.V.: Detecting network intrusions via sampling: A game theoretic approach. In: Proc. of IEEE INFOCOM, San Francisco, CA, USA (2003)
  47.  
  48.  
  49. Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)
  50.  
  51.  
  52. Lelarge, M., Bolot, J.: Economic incentives to increase security in the internet: The case for insurance. In: Proc. of IEEE INFOCOM, Rio de Janeiro, Brazil (2009)
  53.  
  54.  
  55. Maill´ e, P., Reichl, P., Tuffin, B.: Of threats and costs: A game-theoretic approach to security risk management. In: G¨ ulpınar, N., Harrison, P., R¨ ustem, B. (eds.) Performance Models and Risk Management in Communication Systems. Springer,Heidelberg (2010)
  56.  
  57.  
  58. Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion Games with Player-Specific Constants. In: Kuˇ cera, L., Kuˇ cera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 633–644. Springer, Heidelberg (2007)
  59.  
  60.  
  61. Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13(1), 111–124 (1996)
  62.  
  63.  
  64. Milchtaich, I.: Weighted congestion games with separable preferences. Games and Economic Behavior 67(2), 750–757 (2009), http://www.sciencedirect.com/science/article/B6WFW-4W0SK2D-1/2/63c8ccc38f57d26ba8db4ed12c1596d3
  65.  
  66.  
  67. Monderer, D., Shapley, L.S.: Potential games. Games and Economic Behaviour 14, 124–143 (1996)
  68.  
  69.  
  70. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press (1994)
  71.  
  72.  
  73. Perakis, G.: The “Price of Anarchy” under nonlinear and asymmetric costs. Mathematics of Operations Research 32(3), 614–628 (2007)
  74.  
  75.  
  76. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press (2005)
  77.  
  78.  
  79. Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games and Economic Behavior 47(2), 389–403 (2004)
  80.  
  81.  
  82. Sandholm, W.H.: Potential games with continuous player sets. Journal of Economic Theory 97(1), 81–108 (2001)
  83.  
  84.  
  85. Sandholm, W.H.: Large population potential games. Journal of Economic Theory 144(4), 1710–1725 (2009)
  86.  
  87.  
  88. Schmeidler, D.: Equilibrium points of nonatomic games. Journal of Statistical Physics 7(4), 295–300 (1973)
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
Top