Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (*start*)
- nn = 200;
- s = N[8, 20];
- (Sum[Sum[If[Mod[n, k] == 0, (MoebiusMu[k]*k)^(1/2)/n^s, 0], {k, 1,
- nn}], {n, 1, nn}])^2
- (A = Table[
- Table[If[Mod[n, k] == 0, (MoebiusMu[k]*k)^(1/2)/n^s, 0], {k, 1,
- nn}], {n, 1, nn}]);
- N[Total[Total[A.Transpose[A]]], 20]
- Zeta[s]*Zeta[s]/Zeta[2*s - 1]
- (*end*)
- Out[446]= 1.00814049998960894694 + 0.01168365002895327553 I
- Out[448]= 1.0081404999896092120
- Out[449]= 1.008140499989609234
- (*start*)
- nn = 200;
- s = N[8, 20];
- (Sum[Sum[If[Mod[n, k] == 0, (MoebiusMu[k])^(1/2)/n^s, 0], {k, 1,
- nn}], {n, 1, nn}])^2
- (A = Table[
- Table[If[Mod[n, k] == 0, (MoebiusMu[k])^(1/2)/n^s, 0], {k, 1,
- nn}], {n, 1, nn}]);
- N[Total[Total[A.Transpose[A]]], 20]
- Zeta[s]*Zeta[s]/Zeta[2*s]
- (*end*)
- Out[656]= 1.00815593032900188265 + 0.008189189928767649031 I
- Out[658]= 1.0081559303290019133
- Out[659]= 1.008155930329001935
Advertisement
Add Comment
Please, Sign In to add comment