Advertisement
Guest User

Untitled

a guest
Apr 24th, 2019
116
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 56.35 KB | None | 0 0
  1. // OpenCVApplication.cpp : Defines the entry point for the console application.
  2. //
  3.  
  4. #include "stdafx.h"
  5. #include "common.h"
  6. #include <vector>
  7. #include <math.h>
  8. #include <queue>
  9. #include <utility>
  10. #include <unordered_map>
  11. #include <random>
  12. #include <time.h>
  13. #include <fstream>
  14.  
  15. using namespace std;
  16.  
  17.  
  18. #define max(a,b)(((a)>(b))?(a):(b))
  19. #define min(a,b)(((a)<(b))?(a):(b))
  20. int n;
  21.  
  22. int histValues[256];
  23. float normalizedHistoValues[256];
  24. int result[256];
  25.  
  26. void testOpenImage()
  27. {
  28. char fname[MAX_PATH];
  29. while (openFileDlg(fname))
  30. {
  31. Mat src;
  32. src = imread(fname);
  33. imshow("image", src);
  34. waitKey(0);
  35. }
  36. }
  37.  
  38. void testOpenImagesFld()
  39. {
  40. char folderName[MAX_PATH];
  41. if (openFolderDlg(folderName) == 0)
  42. return;
  43. char fname[MAX_PATH];
  44. FileGetter fg(folderName, "bmp");
  45. while (fg.getNextAbsFile(fname))
  46. {
  47. Mat src;
  48. src = imread(fname);
  49. imshow(fg.getFoundFileName(), src);
  50. if (waitKey(0) == 27) //ESC pressed
  51. break;
  52. }
  53. }
  54.  
  55. void testImageOpenAndSave()
  56. {
  57. Mat src, dst;
  58.  
  59. src = imread("Images/Lena_24bits.bmp", CV_LOAD_IMAGE_COLOR); // Read the image
  60.  
  61. if (!src.data) // Check for invalid input
  62. {
  63. printf("Could not open or find the image\n");
  64. return;
  65. }
  66.  
  67. // Get the image resolution
  68. Size src_size = Size(src.cols, src.rows);
  69.  
  70. // Display window
  71. const char* WIN_SRC = "Src"; //window for the source image
  72. namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE);
  73. cvMoveWindow(WIN_SRC, 0, 0);
  74.  
  75. const char* WIN_DST = "Dst"; //window for the destination (processed) image
  76. namedWindow(WIN_DST, CV_WINDOW_AUTOSIZE);
  77. cvMoveWindow(WIN_DST, src_size.width + 10, 0);
  78.  
  79. cvtColor(src, dst, CV_BGR2GRAY); //converts the source image to a grayscale one
  80.  
  81. imwrite("Images/Lena_24bits_gray.bmp", dst); //writes the destination to file
  82.  
  83. imshow(WIN_SRC, src);
  84. imshow(WIN_DST, dst);
  85.  
  86. printf("Press any key to continue ...\n");
  87. waitKey(0);
  88. }
  89.  
  90. void testNegativeImage()
  91. {
  92. char fname[MAX_PATH];
  93. while (openFileDlg(fname))
  94. {
  95. double t = (double)getTickCount(); // Get the current time [s]
  96.  
  97. Mat src = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  98. int height = src.rows;
  99. int width = src.cols;
  100. Mat dst = Mat(height, width, CV_8UC1);
  101. // Asa se acceseaaza pixelii individuali pt. o imagine cu 8 biti/pixel
  102. // Varianta ineficienta (lenta)
  103. for (int i = 0; i < height; i++)
  104. {
  105. for (int j = 0; j < width; j++)
  106. {
  107. uchar val = src.at<uchar>(i, j);
  108. uchar neg = MAX_PATH - val;
  109. dst.at<uchar>(i, j) = neg;
  110. }
  111. }
  112.  
  113. // Get the current time again and compute the time difference [s]
  114. t = ((double)getTickCount() - t) / getTickFrequency();
  115. // Print (in the console window) the processing time in [ms]
  116. printf("Time = %.3f [ms]\n", t * 1000);
  117.  
  118. imshow("input image", src);
  119. imshow("negative image", dst);
  120. waitKey(0);
  121. }
  122. }
  123.  
  124. void testParcurgereSimplaDiblookStyle()
  125. {
  126. char fname[MAX_PATH];
  127. while (openFileDlg(fname))
  128. {
  129. Mat src = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  130. int height = src.rows;
  131. int width = src.cols;
  132. Mat dst = src.clone();
  133.  
  134. double t = (double)getTickCount(); // Get the current time [s]
  135.  
  136. // the fastest approach using the “diblook style”
  137. uchar *lpSrc = src.data;
  138. uchar *lpDst = dst.data;
  139. int w = (int)src.step; // no dword alignment is done !!!
  140. for (int i = 0; i < height; i++)
  141. for (int j = 0; j < width; j++) {
  142. uchar val = lpSrc[i*w + j];
  143. lpDst[i*w + j] = 255 - val;
  144. }
  145.  
  146. // Get the current time again and compute the time difference [s]
  147. t = ((double)getTickCount() - t) / getTickFrequency();
  148. // Print (in the console window) the processing time in [ms]
  149. printf("Time = %.3f [ms]\n", t * 1000);
  150.  
  151. imshow("input image", src);
  152. imshow("negative image", dst);
  153. waitKey(0);
  154. }
  155. }
  156.  
  157. void testColor2Gray()
  158. {
  159. char fname[MAX_PATH];
  160. while (openFileDlg(fname))
  161. {
  162. Mat src = imread(fname);
  163.  
  164. int height = src.rows;
  165. int width = src.cols;
  166.  
  167. Mat dst = Mat(height, width, CV_8UC1);
  168.  
  169. // Asa se acceseaaza pixelii individuali pt. o imagine RGB 24 biti/pixel
  170. // Varianta ineficienta (lenta)
  171. for (int i = 0; i < height; i++)
  172. {
  173. for (int j = 0; j < width; j++)
  174. {
  175. Vec3b v3 = src.at<Vec3b>(i, j);
  176. uchar b = v3[0];
  177. uchar g = v3[1];
  178. uchar r = v3[2];
  179. dst.at<uchar>(i, j) = (r + g + b) / 3;
  180. }
  181. }
  182.  
  183. imshow("input image", src);
  184. imshow("gray image", dst);
  185. waitKey(0);
  186. }
  187. }
  188.  
  189. void testBGR2HSV()
  190. {
  191. char fname[MAX_PATH];
  192. while (openFileDlg(fname))
  193. {
  194. Mat src = imread(fname);
  195. int height = src.rows;
  196. int width = src.cols;
  197.  
  198. // Componentele d eculoare ale modelului HSV
  199. Mat H = Mat(height, width, CV_8UC1);
  200. Mat S = Mat(height, width, CV_8UC1);
  201. Mat V = Mat(height, width, CV_8UC1);
  202.  
  203. // definire pointeri la matricele (8 biti/pixeli) folosite la afisarea componentelor individuale H,S,V
  204. uchar* lpH = H.data;
  205. uchar* lpS = S.data;
  206. uchar* lpV = V.data;
  207.  
  208. Mat hsvImg;
  209. cvtColor(src, hsvImg, CV_BGR2HSV);
  210.  
  211. // definire pointer la matricea (24 biti/pixeli) a imaginii HSV
  212. uchar* hsvDataPtr = hsvImg.data;
  213.  
  214. for (int i = 0; i < height; i++)
  215. {
  216. for (int j = 0; j < width; j++)
  217. {
  218. int hi = i * width * 3 + j * 3;
  219. int gi = i * width + j;
  220.  
  221. lpH[gi] = hsvDataPtr[hi] * 510 / 360; // lpH = 0 .. 255
  222. lpS[gi] = hsvDataPtr[hi + 1]; // lpS = 0 .. 255
  223. lpV[gi] = hsvDataPtr[hi + 2]; // lpV = 0 .. 255
  224. }
  225. }
  226.  
  227. imshow("input image", src);
  228. imshow("H", H);
  229. imshow("S", S);
  230. imshow("V", V);
  231.  
  232. waitKey(0);
  233. }
  234. }
  235.  
  236. void testResize()
  237. {
  238. char fname[MAX_PATH];
  239. while (openFileDlg(fname))
  240. {
  241. Mat src;
  242. src = imread(fname);
  243. Mat dst1, dst2;
  244. //without interpolation
  245. resizeImg(src, dst1, 320, false);
  246. //with interpolation
  247. resizeImg(src, dst2, 320, true);
  248. imshow("input image", src);
  249. imshow("resized image (without interpolation)", dst1);
  250. imshow("resized image (with interpolation)", dst2);
  251. waitKey(0);
  252. }
  253. }
  254.  
  255. void testCanny()
  256. {
  257. char fname[MAX_PATH];
  258. while (openFileDlg(fname))
  259. {
  260. Mat src, dst, gauss;
  261. src = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  262. double k = 0.4;
  263. int pH = 50;
  264. int pL = (int)k*pH;
  265. GaussianBlur(src, gauss, Size(5, 5), 0.8, 0.8);
  266. Canny(gauss, dst, pL, pH, 3);
  267. imshow("input image", src);
  268. imshow("canny", dst);
  269. waitKey(0);
  270. }
  271. }
  272.  
  273. void testVideoSequence()
  274. {
  275. VideoCapture cap("Videos/rubic.avi"); // off-line video from file
  276. //VideoCapture cap(0); // live video from web cam
  277. if (!cap.isOpened()) {
  278. printf("Cannot open video capture device.\n");
  279. waitKey(0);
  280. return;
  281. }
  282.  
  283. Mat edges;
  284. Mat frame;
  285. char c;
  286.  
  287. while (cap.read(frame))
  288. {
  289. Mat grayFrame;
  290. cvtColor(frame, grayFrame, CV_BGR2GRAY);
  291. Canny(grayFrame, edges, 40, 100, 3);
  292. imshow("source", frame);
  293. imshow("gray", grayFrame);
  294. imshow("edges", edges);
  295. c = cvWaitKey(0); // waits a key press to advance to the next frame
  296. if (c == 27) {
  297. // press ESC to exit
  298. printf("ESC pressed - capture finished\n");
  299. break; //ESC pressed
  300. };
  301. }
  302. }
  303.  
  304.  
  305.  
  306. void testSnap()
  307. {
  308. VideoCapture cap(0); // open the deafult camera (i.e. the built in web cam)
  309. if (!cap.isOpened()) // openenig the video device failed
  310. {
  311. printf("Cannot open video capture device.\n");
  312. return;
  313. }
  314.  
  315. Mat frame;
  316. char numberStr[256];
  317. char fileName[256];
  318.  
  319. // video resolution
  320. Size capS = Size((int)cap.get(CV_CAP_PROP_FRAME_WIDTH),
  321. (int)cap.get(CV_CAP_PROP_FRAME_HEIGHT));
  322.  
  323. // Display window
  324. const char* WIN_SRC = "Src"; //window for the source frame
  325. namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE);
  326. cvMoveWindow(WIN_SRC, 0, 0);
  327.  
  328. const char* WIN_DST = "Snapped"; //window for showing the snapped frame
  329. namedWindow(WIN_DST, CV_WINDOW_AUTOSIZE);
  330. cvMoveWindow(WIN_DST, capS.width + 10, 0);
  331.  
  332. char c;
  333. int frameNum = -1;
  334. int frameCount = 0;
  335.  
  336. for (;;)
  337. {
  338. cap >> frame; // get a new frame from camera
  339. if (frame.empty())
  340. {
  341. printf("End of the video file\n");
  342. break;
  343. }
  344.  
  345. ++frameNum;
  346.  
  347. imshow(WIN_SRC, frame);
  348.  
  349. c = cvWaitKey(10); // waits a key press to advance to the next frame
  350. if (c == 27) {
  351. // press ESC to exit
  352. printf("ESC pressed - capture finished");
  353. break; //ESC pressed
  354. }
  355. if (c == 115) { //'s' pressed - snapp the image to a file
  356. frameCount++;
  357. fileName[0] = NULL;
  358. sprintf(numberStr, "%d", frameCount);
  359. strcat(fileName, "Images/A");
  360. strcat(fileName, numberStr);
  361. strcat(fileName, ".bmp");
  362. bool bSuccess = imwrite(fileName, frame);
  363. if (!bSuccess)
  364. {
  365. printf("Error writing the snapped image\n");
  366. }
  367. else
  368. imshow(WIN_DST, frame);
  369. }
  370. }
  371.  
  372. }
  373.  
  374. void MyCallBackFunc(int event, int x, int y, int flags, void* param)
  375. {
  376.  
  377. Mat* src = (Mat*)param;
  378. if (event == CV_EVENT_LBUTTONDOWN)
  379. {
  380. printf("Pos(x,y): %d,%d Color(RGB): %d,%d,%d\n",
  381. x, y,
  382. (int)(*src).at<Vec3b>(y, x)[2],
  383. (int)(*src).at<Vec3b>(y, x)[1],
  384. (int)(*src).at<Vec3b>(y, x)[0]);
  385. }
  386. }
  387.  
  388. void testMouseClick()
  389. {
  390. Mat src;
  391. // Read image from file
  392. char fname[MAX_PATH];
  393. while (openFileDlg(fname))
  394. {
  395. src = imread(fname);
  396. //Create a window
  397. namedWindow("My Window", 1);
  398.  
  399. //set the callback function for any mouse event
  400. setMouseCallback("My Window", MyCallBackFunc, &src);
  401.  
  402. //show the image
  403. imshow("My Window", src);
  404.  
  405. // Wait until user press some key
  406. waitKey(0);
  407. }
  408. }
  409.  
  410. /* Histogram display function - display a histogram using bars (simlilar to L3 / PI)
  411. Input:
  412. name - destination (output) window name
  413. hist - pointer to the vector containing the histogram values
  414. hist_cols - no. of bins (elements) in the histogram = histogram image width
  415. hist_height - height of the histogram image
  416. Call example:
  417. showHistogram ("MyHist", hist_dir, 255, 200);
  418. */
  419. void showHistogram(const std::string& name, int* hist, const int hist_cols, const int hist_height)
  420. {
  421. Mat imgHist(hist_height, hist_cols, CV_8UC3, CV_RGB(255, 255, 255)); // constructs a white image
  422.  
  423. //computes histogram maximum
  424. int max_hist = 0;
  425. for (int i = 0; i < hist_cols; i++)
  426. if (hist[i] > max_hist)
  427. max_hist = hist[i];
  428. double scale = 1.0;
  429. scale = (double)hist_height / max_hist;
  430. int baseline = hist_height - 1;
  431.  
  432. for (int x = 0; x < hist_cols; x++) {
  433. Point p1 = Point(x, baseline);
  434. Point p2 = Point(x, baseline - cvRound(hist[x] * scale));
  435. line(imgHist, p1, p2, CV_RGB(255, 0, 255)); // histogram bins colored in magenta
  436. }
  437.  
  438. imshow(name, imgHist);
  439. }
  440. void testNegativFrumos()
  441. {
  442. char fname[MAX_PATH];
  443. while (openFileDlg(fname))
  444. {
  445. double t = (double)getTickCount(); // Get the current time [s]
  446.  
  447. Mat src = imread(fname, 1);
  448. int height = src.rows;
  449. int width = src.cols;
  450. Mat dst = Mat(height, width, CV_8UC3);
  451. // Asa se acceseaaza pixelii individuali pt. o imagine cu 8 biti/pixel
  452. // Varianta ineficienta (lenta)
  453. for (int i = 0; i < height; i++)
  454. {
  455. for (int j = 0; j < width; j++)
  456. {
  457. Vec3b pixel = src.at< Vec3b>(i, j);
  458. uchar B = pixel[0];
  459. uchar R = pixel[1];
  460. uchar G = pixel[2];
  461.  
  462. dst.at<Vec3b>(i, j)[0] = 255 - B;
  463. dst.at<Vec3b>(i, j)[1] = 255 - R;
  464. dst.at<Vec3b>(i, j)[2] = 255 - G;
  465. }
  466. }
  467.  
  468. // Get the current time again and compute the time difference [s]
  469. t = ((double)getTickCount() - t) / getTickFrequency();
  470. // Print (in the console window) the processing time in [ms]
  471. printf("Time = %.3f [ms]\n", t * 1000);
  472.  
  473. imshow("input image", src);
  474. imshow("negative image", dst);
  475. waitKey(0);
  476. }
  477. }
  478.  
  479.  
  480.  
  481. void testGrayScaleAdditiveFactor() {
  482. char fname[MAX_PATH];
  483. int factor;
  484. printf("Factor: ");
  485. scanf("%d", &factor);
  486. while (openFileDlg(fname))
  487. {
  488. Mat src = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  489. int height = src.rows;
  490. int width = src.cols;
  491. Mat dst = Mat(height, width, CV_8UC1);
  492. for (int i = 0; i < height; i++)
  493. {
  494. for (int j = 0; j < width; j++)
  495. {
  496. uchar val = src.at<uchar>(i, j);
  497. int newVal = max(min(val + factor, 255), 0);
  498. dst.at<uchar>(i, j) = (uchar)newVal;
  499. }
  500. }
  501. imshow("input image", src);
  502. imshow("Additive factor image", dst);
  503. waitKey(0);
  504. }
  505. }
  506.  
  507.  
  508. void testGrayScaleMultiplyFactor() {
  509. char fname[MAX_PATH];
  510. int factor;
  511. printf("Factor: ");
  512. scanf("%d", &factor);
  513. while (openFileDlg(fname))
  514. {
  515. //double t = (double)getTickCount(); // Get the current time [s]
  516. Mat src = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  517. int height = src.rows;
  518. int width = src.cols;
  519. Mat dst = Mat(height, width, CV_8UC1);
  520. for (int i = 0; i < height; i++)
  521. {
  522. for (int j = 0; j < width; j++)
  523. {
  524. uchar val = src.at<uchar>(i, j);
  525. int newVal = max(min(val * factor, 255), 0);
  526. dst.at<uchar>(i, j) = (uchar)newVal;
  527. }
  528. }
  529. //t = ((double)getTickCount() - t) / getTickFrequency();
  530. imshow("input image", src);
  531. imshow("Multiply factor image", dst);
  532. imwrite("D:\\30236\\Teo\\OpenCVApplication-VS2013_OCV2413_basic\\Images\\imaginea_noastra.bmp", dst); //writes the destination to file
  533. waitKey(0);
  534. }
  535. }
  536.  
  537. void Patrate_colorate() {
  538. int rows = 256;
  539. int cols = 256;
  540. int half_row = rows / 2;
  541. int half_col = cols / 2;
  542. Mat src(rows, cols, CV_8UC3);
  543. for (int i = 0; i < rows; i++) {
  544. for (int j = 0; j < cols; j++) {
  545. if (i <= half_row) {
  546. if (j <= half_col) {
  547. //ALB
  548. src.at<Vec3b>(i, j)[0] = 255;
  549. src.at<Vec3b>(i, j)[1] = 255;
  550. src.at<Vec3b>(i, j)[2] = 255;
  551. }
  552. else {
  553. //ROSU
  554. src.at<Vec3b>(i, j)[0] = 0;
  555. src.at<Vec3b>(i, j)[1] = 0;
  556. src.at<Vec3b>(i, j)[2] = 255;
  557. }
  558. }
  559. else {
  560. if (j <= half_col) {
  561. //VERDE
  562. src.at<Vec3b>(i, j)[0] = 0;
  563. src.at<Vec3b>(i, j)[1] = 255;
  564. src.at<Vec3b>(i, j)[2] = 0;
  565. }
  566. else {
  567. //GALBEN
  568. src.at<Vec3b>(i, j)[0] = 0;
  569. src.at<Vec3b>(i, j)[1] = 255;
  570. src.at<Vec3b>(i, j)[2] = 255;
  571. }
  572. }
  573. }
  574. }
  575. imshow("Patrate colorate", src);
  576. imwrite("D:\\30236\\Teo\\OpenCVApplication-VS2013_OCV2413_basic\\Images\\patrateleeeeeeeeeeee.bmp", src); //writes the destination to file
  577. waitKey(0);
  578. }
  579.  
  580.  
  581. void matricica_inv() {
  582. float vals[9];
  583. for (int i = 0; i < 9; i++) {
  584.  
  585. scanf("%f", &vals[i]);
  586.  
  587. }
  588. Mat M(3, 3, CV_32FC1, vals); //stocare date de tip float
  589. Mat inv = M.inv();
  590. std::cout << inv << std::endl;
  591.  
  592. }
  593.  
  594. void split_windows() {
  595. char fname[MAX_PATH];
  596.  
  597. while (openFileDlg(fname))
  598. {
  599.  
  600. Mat img = imread(fname, CV_LOAD_IMAGE_COLOR);
  601. imshow("original image", img);
  602. Mat imR(img.rows, img.cols, CV_8UC1), imG(img.rows, img.cols, CV_8UC1), imB(img.rows, img.cols, CV_8UC1);
  603. for (int i = 0; i < img.rows; i++)
  604. {
  605. for (int j = 0; j < img.cols; j++)
  606. {
  607. imR.at<uchar>(i, j) = img.at<Vec3b>(i, j)[2];
  608. imG.at<uchar>(i, j) = img.at<Vec3b>(i, j)[1];
  609. imB.at<uchar>(i, j) = img.at<Vec3b>(i, j)[0];
  610. }
  611. }
  612. imshow("R", imR);
  613. imshow("G", imG);
  614. imshow("B", imB);
  615. waitKey(0);
  616. }
  617. }
  618. void color_to_grayscale() {
  619. char fname[10000];
  620.  
  621. while (openFileDlg(fname))
  622. {
  623.  
  624. Mat img = imread(fname, CV_LOAD_IMAGE_COLOR);
  625. imshow("original image", img);
  626. Mat imgr(img.rows, img.cols, CV_8UC1);
  627. for (int i = 0; i < img.rows; i++)
  628. {
  629. for (int j = 0; j < img.cols; j++)
  630. {
  631. imgr.at<uchar>(i, j) = (img.at<Vec3b>(i, j)[2] + img.at<Vec3b>(i, j)[1] + img.at<Vec3b>(i, j)[0]) / 3;
  632. }
  633. }
  634. imshow("grayscale", imgr);
  635. waitKey(0);
  636. }
  637. }
  638. void grayscale_to_black_white() {
  639. char fname[10000];
  640. int prag;
  641. printf("Prag: ");
  642. scanf("%d", &prag);
  643.  
  644. while (openFileDlg(fname))
  645. {
  646.  
  647. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  648. imshow("original image", img);
  649. Mat imgr(img.rows, img.cols, CV_8UC1);
  650. for (int i = 0; i < img.rows; i++)
  651. {
  652. for (int j = 0; j < img.cols; j++)
  653. {
  654. if (img.at<uchar>(i, j) > prag) {
  655. imgr.at<uchar>(i, j) = 255;
  656. }
  657. else {
  658. imgr.at<uchar>(i, j) = 0;
  659. }
  660. }
  661. }
  662. imshow("black and white", imgr);
  663. waitKey(0);
  664. }
  665. }
  666. void rgb_to_hsv() {
  667. char fname[10000];
  668. float r, g, b, M, m, C, H, S, V;
  669. while (openFileDlg(fname))
  670. {
  671.  
  672. Mat img = imread(fname, CV_LOAD_IMAGE_COLOR);
  673. imshow("original image", img);
  674. Mat imH(img.rows, img.cols, CV_8UC1), imS(img.rows, img.cols, CV_8UC1), imV(img.rows, img.cols, CV_8UC1);
  675. for (int i = 0; i < img.rows; i++)
  676. {
  677. for (int j = 0; j < img.cols; j++)
  678. {
  679. r = (float)img.at<Vec3b>(i, j)[2] / 255;
  680. g = (float)img.at<Vec3b>(i, j)[1] / 255;
  681. b = (float)img.at<Vec3b>(i, j)[0] / 255;
  682.  
  683. M = max(max(r, g), b);
  684. m = min(min(r, g), b);
  685. C = M - m;
  686.  
  687. V = M;
  688.  
  689. if (V != 0)
  690. S = C / V;
  691. else
  692. S = 0;
  693.  
  694. if (C != 0) {
  695. if (M == r) {
  696. H = 60 * (g - b) / C;
  697. }
  698. if (M == g) {
  699. H = 120 * (b - r) / C;
  700. }
  701. if (M == b) {
  702. H = 240 * (r - g) / C;
  703. }
  704. }
  705. else {
  706. H = 0;
  707. }
  708. if (H < 0) {
  709. H = H + 360;
  710. }
  711.  
  712. imH.at<uchar>(i, j) = H * 255 / 360;
  713. imS.at<uchar>(i, j) = S * 255;
  714. imV.at<uchar>(i, j) = V * 255;
  715. }
  716. }
  717. imshow("H", imH);
  718. imshow("S", imS);
  719. imshow("V", imV);
  720. waitKey(0);
  721. }
  722. }
  723.  
  724. bool isInside(Mat src, int i, int j) {
  725.  
  726. int height = src.rows;
  727. int width = src.cols;
  728.  
  729. if ((i > width) || (i < 0)) {
  730. return false;
  731. }
  732.  
  733. if ((j > height) || (j < 0)) {
  734. return false;
  735. }
  736. return true;
  737.  
  738. }
  739.  
  740. void testIsInside() {
  741.  
  742.  
  743. int i, j;
  744.  
  745. char fname[MAX_PATH];
  746.  
  747. while (openFileDlg(fname))
  748. {
  749. Mat src = imread(fname, CV_LOAD_IMAGE_COLOR);
  750.  
  751. printf("i: ");
  752. scanf("%d", &i);
  753.  
  754.  
  755. printf("j: ");
  756. scanf("%d", &j);
  757.  
  758.  
  759. if (isInside(src, i, j))
  760. printf("Is inside\n");
  761. else printf("Is outside\n");
  762. }
  763.  
  764. }
  765.  
  766. void histogram() {
  767.  
  768. char fname[10000];
  769.  
  770. while (openFileDlg(fname))
  771. {
  772.  
  773. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  774. imshow("original image", img);
  775.  
  776. for (int i = 0; i < img.rows; i++)
  777. {
  778. for (int j = 0; j < img.cols; j++)
  779. {
  780. histValues[img.at<uchar>(i, j)]++;
  781. }
  782. }
  783. showHistogram("MyHist", histValues, 256, 500);
  784. for (int i = 0; i < 256; i++)
  785. {
  786. histValues[i] = 0;
  787. }
  788. }
  789.  
  790. }
  791.  
  792.  
  793. void normalizeHistogram(int* histogram, int size) {
  794.  
  795. for (int i = 0; i < 256; i++)
  796. normalizedHistoValues[i] = (float)histValues[i] / size;
  797.  
  798. }
  799.  
  800. void histo(Mat img, int m, int* &hist) {
  801. hist = new int[m] {};
  802. for (int i = 0; i < img.rows; i++)
  803. for (int j = 0; j < img.cols; j++) {
  804. int bin = (float)img.at<uchar>(i, j) / 256 * m;
  805. hist[bin]++;
  806. }
  807.  
  808.  
  809. }
  810.  
  811. void praguri_multiple() {
  812. int WH = 5;
  813. float TH = 0.0003;
  814. float v;
  815. int dimension = 1;
  816. boolean ok;
  817. char fname[10000];
  818.  
  819. while (openFileDlg(fname))
  820. {
  821.  
  822. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  823. imshow("original image", img);
  824.  
  825. for (int i = 0; i < img.rows; i++)
  826. {
  827. for (int j = 0; j < img.cols; j++)
  828. {
  829. histValues[img.at<uchar>(i, j)]++;
  830. }
  831. }
  832. normalizeHistogram(histValues, img.rows*img.cols);
  833.  
  834. for (int k = 0 + WH; k < 255 - WH; k++) {
  835. v = 0;
  836. ok = true;
  837. for (int i = k - WH; i < k + WH; i++) {
  838. v += normalizedHistoValues[i];
  839. if (normalizedHistoValues[k] < normalizedHistoValues[i]) {
  840. ok = false;
  841. }
  842. }
  843. v = v / (2 * WH + 1);
  844. if (normalizedHistoValues[k] > v + TH && ok) {
  845. result[dimension++] = k;
  846.  
  847. }
  848. }
  849. result[0] = 0;
  850. result[dimension] = 255;
  851. dimension++;
  852. for (int i = 0; i < dimension; i++) {
  853. std::cout << result[i] << "\n" << std::endl;
  854. }
  855.  
  856. for (int i = 0; i < img.rows; i++)
  857. {
  858. for (int j = 0; j < img.cols; j++)
  859. {
  860. int maxx = -1;
  861. for (int k = 0; k < dimension - 1; k++) {
  862. if (img.at<uchar>(i, j) > result[k] && img.at<uchar>(i, j) < result[k + 1]) {
  863. if (img.at<uchar>(i, j) - result[k] < result[k + 1] - img.at<uchar>(i, j)) {
  864. img.at<uchar>(i, j) = result[k];
  865. }
  866. else {
  867. img.at<uchar>(i, j) = result[k + 1];
  868. }
  869. }
  870. }
  871.  
  872. }
  873. }
  874. imshow("praguri_multiple", img);
  875. }
  876. }
  877. uchar limit_value(int value) {
  878. if (value < 0) {
  879. return 0;
  880. }
  881. else if (value > 255) {
  882. return 255;
  883. }
  884. else {
  885. return value;
  886. }
  887. }
  888. void floyd_steinberg() {
  889. int WH = 5;
  890. float TH = 0.0003;
  891. float miu;
  892. int dimension = 1;
  893. boolean ok;
  894. char fname[10000];
  895.  
  896. while (openFileDlg(fname))
  897. {
  898.  
  899. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  900. imshow("original image", img);
  901.  
  902. for (int i = 0; i < img.rows; i++)
  903. {
  904. for (int j = 0; j < img.cols; j++)
  905. {
  906. histValues[img.at<uchar>(i, j)]++;
  907. }
  908. }
  909. normalizeHistogram(histValues, img.rows*img.cols);
  910.  
  911. for (int k = 0 + WH; k < 255 - WH; k++) {
  912. miu = 0;
  913. ok = true;
  914. for (int i = k - WH; i < k + WH; i++) {
  915. miu += normalizedHistoValues[i];
  916. if (normalizedHistoValues[k] < normalizedHistoValues[i])ok = false;
  917. }
  918. miu = miu / (2 * WH + 1);
  919. if (normalizedHistoValues[k] > miu + TH && ok) {
  920. result[dimension++] = k;
  921.  
  922. }
  923. }
  924. result[0] = 0;
  925. result[dimension] = 255;
  926. dimension++;
  927. for (int i = 0; i < dimension; i++) {
  928. std::cout << result[i] << "\n" << std::endl;
  929. }
  930.  
  931. for (int i = 0; i < img.rows - 1; i++)
  932. {
  933. for (int j = 0; j < img.cols - 1; j++)
  934. {
  935. int oldValue = img.at<uchar>(i, j);
  936. int newValue;
  937. float error;
  938. for (int k = 0; k < dimension - 1; k++) {
  939. if (img.at<uchar>(i, j) > result[k] && img.at<uchar>(i, j) < result[k + 1]) {
  940. if (img.at<uchar>(i, j) - result[k] < result[k + 1] - img.at<uchar>(i, j))newValue = result[k];
  941. else newValue = result[k + 1];
  942. }
  943. }
  944. error = oldValue - newValue;
  945.  
  946. img.at<uchar>(i, j) = newValue;
  947. img.at<uchar>(i, j + 1) = img.at<uchar>(i, j + 1) + limit_value((int)(7 * error / 16));
  948. img.at<uchar>(i + 1, j - 1) = img.at<uchar>(i + 1, j - 1) + limit_value((int)(3 * error / 16));
  949. img.at<uchar>(i + 1, j) = img.at<uchar>(i + 1, j) + limit_value((int)(5 * error / 16));
  950. img.at<uchar>(i + 1, j + 1) = img.at<uchar>(i + 1, j + 1) + limit_value((int)(error / 16));
  951.  
  952. }
  953. }
  954. imshow("floyd image", img);
  955.  
  956.  
  957. }
  958. }
  959.  
  960. void onMouse(int event, int x, int y, int flags, void* param)
  961. {
  962. if (event == EVENT_MOUSEMOVE)
  963. {
  964. printf("Mouse move over the window - position (", x, ", ", y, ")");
  965. }
  966. else if (event == EVENT_LBUTTONDOWN)
  967. {
  968. printf("Left button of the mouse is clicked - position (", x, ", ", y, ")");
  969. }
  970. else if (event == EVENT_RBUTTONDOWN)
  971. {
  972. printf("Right button of the mouse is clicked - position (", x, ", ", y, ")");
  973. }
  974. else if (event == EVENT_MBUTTONDOWN)
  975. {
  976. printf("Middle button of the mouse is clicked - position (", x, ", ", y, ")");
  977. }
  978. else if (event == EVENT_LBUTTONUP)
  979. {
  980. printf("Left button of the mouse is released - position (", x, ", ", y, ")");
  981. }
  982. else if (event == EVENT_RBUTTONUP)
  983. {
  984. printf("Right button of the mouse is released - position (", x, ", ", y, ")");
  985. }
  986. else if (event == EVENT_MBUTTONUP)
  987. {
  988. printf("Middle button of the mouse is released - position (", x, ", ", y, ")");
  989. }
  990. else if (event == EVENT_LBUTTONDBLCLK)
  991. {
  992. printf("Middle button of the mouse is double click - position (", x, ", ", y, ")");
  993. }
  994. else if (event == EVENT_RBUTTONDBLCLK)
  995. {
  996. printf("Middle button of the mouse is double click - position (", x, ", ", y, ")");
  997. }
  998. else if (event == EVENT_MBUTTONDBLCLK)
  999. {
  1000. printf("Middle button of the mouse is double click - position (", x, ", ", y, ")");
  1001. }
  1002.  
  1003. }
  1004.  
  1005. void calcAria(int event, int x, int y, int flags, void* param)
  1006. {
  1007.  
  1008. Mat* src = (Mat*)param;
  1009. if (event == CV_EVENT_LBUTTONDOWN)
  1010. {
  1011. int b = (int)(*src).at<Vec3b>(y, x)[0];
  1012. int g = (int)(*src).at<Vec3b>(y, x)[1];
  1013. int r = (int)(*src).at<Vec3b>(y, x)[2];
  1014. int aria = 0;
  1015. for (int i = 0; i < (*src).rows; i++) {
  1016. for (int j = 0; j < (*src).cols; j++) {
  1017. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1018. aria++;
  1019. }
  1020. }
  1021. }
  1022. printf("%d\n", aria);
  1023. }
  1024. }
  1025.  
  1026. void computeAria() {
  1027. Mat src;
  1028. // Read image from file
  1029. char fname[MAX_PATH];
  1030. while (openFileDlg(fname))
  1031. {
  1032. src = imread(fname);
  1033. //Create a window
  1034. namedWindow("My Window", 1);
  1035.  
  1036. //set the callback function for any mouse event
  1037. setMouseCallback("My Window", calcAria, &src);
  1038.  
  1039. //show the image
  1040. imshow("My Window", src);
  1041.  
  1042. // Wait until user press some key
  1043. waitKey(0);
  1044. }
  1045. }
  1046.  
  1047. void calcCentruDeMasa(int event, int x, int y, int flags, void* param)
  1048. {
  1049.  
  1050. Mat* src = (Mat*)param;
  1051. if (event == CV_EVENT_LBUTTONDOWN)
  1052. {
  1053. int b = (int)(*src).at<Vec3b>(y, x)[0];
  1054. int g = (int)(*src).at<Vec3b>(y, x)[1];
  1055. int r = (int)(*src).at<Vec3b>(y, x)[2];
  1056. int aria = 0;
  1057.  
  1058. for (int i = 0; i < (*src).rows; i++) {
  1059. for (int j = 0; j < (*src).cols; j++) {
  1060. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1061. aria++;
  1062. }
  1063. }
  1064. }
  1065. int col = 0, row = 0;
  1066. for (int i = 0; i < (*src).rows; i++) {
  1067. for (int j = 0; j < (*src).cols; j++) {
  1068. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1069. row += i;
  1070. col += j;
  1071. }
  1072. }
  1073. }
  1074.  
  1075. printf("r = %f , c = %f\n", ((float)1 / aria)*row, ((float)1 / aria)*col);
  1076.  
  1077. }
  1078. }
  1079.  
  1080.  
  1081.  
  1082. void computeCentrulDeMasa() {
  1083. Mat src;
  1084. // Read image from file
  1085. char fname[MAX_PATH];
  1086. while (openFileDlg(fname))
  1087. {
  1088. src = imread(fname);
  1089. //Create a window
  1090. namedWindow("My Window", 1);
  1091.  
  1092. //set the callback function for any mouse event
  1093. setMouseCallback("My Window", calcCentruDeMasa, &src);
  1094.  
  1095. //show the image
  1096. imshow("My Window", src);
  1097.  
  1098. // Wait until user press some key
  1099. waitKey(0);
  1100. }
  1101. }
  1102.  
  1103. void ElongationCallBack(int event, int x, int y, int flags, void* param)
  1104. {
  1105. Mat* src = (Mat*)param;
  1106. Mat src1 = *src;
  1107. Vec3b label = 0;
  1108. if (event == CV_EVENT_LBUTTONDOWN)
  1109. {
  1110.  
  1111. label = src1.at<Vec3b>(y, x);
  1112. int area = 0;
  1113. int aux_rows = 0;
  1114. int aux_cols = 0;
  1115. for (int i = 0; i < src1.rows; i++) {
  1116. for (int j = 0; j < src1.cols; j++) {
  1117. if (src1.at<Vec3b>(i, j) == label) {
  1118. area++;
  1119. aux_rows += i;
  1120. aux_cols += j;
  1121. }
  1122.  
  1123. }
  1124.  
  1125. }
  1126. int massX = aux_rows / area;
  1127. int massY = aux_cols / area;
  1128. float tan = 0.0;
  1129. int sum_cols = 0;
  1130. int sum_rows = 0;
  1131. for (int i = 0; i < src1.rows; i++) {
  1132. for (int j = 0; j < src1.cols; j++) {
  1133. if (src1.at<Vec3b>(i, j) == label) {
  1134. tan += (i - massX)*(j - massY);
  1135. sum_cols += (j - massY) ^ 2;
  1136. sum_rows += (i - massX) ^ 2;
  1137. }
  1138.  
  1139. }
  1140.  
  1141. }
  1142. float alfa = atan2(2 * tan, (sum_cols - sum_rows));
  1143. float angle = (alfa * 90) / PI;
  1144. printf("Angle is is %f\n", angle);
  1145. }
  1146.  
  1147. }
  1148.  
  1149. void computeElongation()
  1150. {
  1151. char fname[MAX_PATH];
  1152. while (openFileDlg(fname))
  1153. {
  1154. Mat src;
  1155. src = imread(fname, CV_LOAD_IMAGE_COLOR);
  1156. //Create a window
  1157. namedWindow("My Window", 1);
  1158.  
  1159. //set the callback function for any mouse event
  1160. setMouseCallback("My Window", ElongationCallBack, &src);
  1161.  
  1162. //show the image
  1163. imshow("My Window", src);
  1164.  
  1165. waitKey();
  1166. }
  1167.  
  1168. }
  1169.  
  1170. void computePerimeterCallback(int event, int x, int y, int flags, void* param) {
  1171. Mat* src = (Mat*)param;
  1172. Mat src1 = *src;
  1173. Vec3b label = 0;
  1174. if (event == CV_EVENT_LBUTTONDOWN)
  1175. {
  1176.  
  1177. label = src1.at<Vec3b>(y, x);
  1178. int perimeter = 0;
  1179. for (int i = 0; i < src1.rows; i++) {
  1180. for (int j = 0; j < src1.cols; j++) {
  1181. if (src1.at<Vec3b>(i, j) == label)
  1182. if (src1.at<Vec3b>(i - 1, j) != label | src1.at<Vec3b>(i - 1, j - 1) != label | src1.at<Vec3b>(i - 1, j + 1) != label | src1.at<Vec3b>(i, j + 1) != label
  1183. | src1.at<Vec3b>(i + 1, j - 1) != label | src1.at<Vec3b>(i + 1, j) != label | src1.at<Vec3b>(i + 1, j + 1) != label | src1.at<Vec3b>(i, j - 1) != label)
  1184. {
  1185. perimeter++;
  1186. }
  1187.  
  1188. }
  1189.  
  1190. }
  1191.  
  1192. printf("Perimeter is %d\n", perimeter);
  1193. }
  1194. }
  1195.  
  1196.  
  1197. void computePerimeter() {
  1198. Mat src;
  1199. // Read image from file
  1200. char fname[MAX_PATH];
  1201. while (openFileDlg(fname))
  1202. {
  1203. src = imread(fname);
  1204. //Create a window
  1205. namedWindow("My Window", 1);
  1206.  
  1207. //set the callback function for any mouse event
  1208. setMouseCallback("My Window", computePerimeterCallback, &src);
  1209.  
  1210. //show the image
  1211. imshow("My Window", src);
  1212.  
  1213. // Wait until user press some key
  1214. waitKey(0);
  1215. }
  1216. }
  1217.  
  1218. void computeFactorDesubtiereCallback(int event, int x, int y, int flags, void* param) {
  1219. Mat* src = (Mat*)param;
  1220. Mat src1 = *src;
  1221. Vec3b label = 0;
  1222. if (event == CV_EVENT_LBUTTONDOWN)
  1223. {
  1224.  
  1225. label = src1.at<Vec3b>(y, x);
  1226. int aria = 0;
  1227. for (int i = 0; i < (*src).rows; i++) {
  1228. for (int j = 0; j < (*src).cols; j++) {
  1229. if (label == src1.at<Vec3b>(i, j)) {
  1230. aria++;
  1231. }
  1232. }
  1233. }
  1234. int perimeter = 0;
  1235. for (int i = 0; i < src1.rows; i++) {
  1236. for (int j = 0; j < src1.cols; j++) {
  1237. if (src1.at<Vec3b>(i, j) == label)
  1238. if (src1.at<Vec3b>(i - 1, j) != label | src1.at<Vec3b>(i - 1, j - 1) != label | src1.at<Vec3b>(i - 1, j + 1) != label | src1.at<Vec3b>(i, j + 1) != label
  1239. | src1.at<Vec3b>(i + 1, j - 1) != label | src1.at<Vec3b>(i + 1, j) != label | src1.at<Vec3b>(i + 1, j + 1) != label | src1.at<Vec3b>(i, j - 1) != label)
  1240. {
  1241. perimeter++;
  1242. }
  1243.  
  1244. }
  1245.  
  1246. }
  1247.  
  1248. printf("Factorul de subtiere este %f\n", 4 * PI*((float)aria / (perimeter*perimeter)));
  1249. }
  1250. }
  1251.  
  1252. void computeFactorDeSubtiere() {
  1253. Mat src;
  1254. // Read image from file
  1255. char fname[MAX_PATH];
  1256. while (openFileDlg(fname))
  1257. {
  1258. src = imread(fname);
  1259. //Create a window
  1260. namedWindow("My Window", 1);
  1261.  
  1262. //set the callback function for any mouse event
  1263. setMouseCallback("My Window", computeFactorDesubtiereCallback, &src);
  1264.  
  1265. //show the image
  1266. imshow("My Window", src);
  1267.  
  1268. // Wait until user press some key
  1269. waitKey(0);
  1270. }
  1271. }
  1272.  
  1273. void computeFactorDeAspectCallback(int event, int x, int y, int flags, void* param)
  1274. {
  1275. Mat* src = (Mat*)param;
  1276. Mat src1 = *src;
  1277. Vec3b label = 0;
  1278. int cMax = -255;
  1279. int cMin = 255;
  1280. int rMax = -255;
  1281. int rMin = 255;
  1282.  
  1283. if (event == CV_EVENT_LBUTTONDOWN)
  1284. {
  1285. int b = (int)(*src).at<Vec3b>(y, x)[0];
  1286. int g = (int)(*src).at<Vec3b>(y, x)[1];
  1287. int r = (int)(*src).at<Vec3b>(y, x)[2];
  1288.  
  1289. for (int i = 0; i < (*src).rows; i++) {
  1290. for (int j = 0; j < (*src).cols; j++) {
  1291. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1292. if (i < cMin)
  1293. {
  1294. rMin = i;
  1295. }
  1296. if (i > cMax)
  1297. {
  1298. rMax = i;
  1299. }
  1300. if (j < cMin)
  1301. {
  1302. cMin = j;
  1303. }
  1304. if (j > cMax)
  1305. {
  1306. cMax = j;
  1307. }
  1308. }
  1309. }
  1310. }
  1311.  
  1312. float x = cMax - cMin + 1;
  1313. float y = rMax - rMin + 1;
  1314. printf("%f", x / y);
  1315. }
  1316. }
  1317. void computeFactorulDeAspect() {
  1318. Mat src;
  1319. // Read image from file
  1320. char fname[MAX_PATH];
  1321. while (openFileDlg(fname))
  1322. {
  1323. src = imread(fname);
  1324. //Create a window
  1325. namedWindow("My Window", 1);
  1326.  
  1327. //set the callback function for any mouse event
  1328. setMouseCallback("My Window", computeFactorDeAspectCallback, &src);
  1329.  
  1330. //show the image
  1331. imshow("My Window", src);
  1332.  
  1333. // Wait until user press some key
  1334. waitKey(0);
  1335. }
  1336. }
  1337.  
  1338. void drawContour() {
  1339. Mat src1;
  1340. char fname[MAX_PATH];
  1341. while (openFileDlg(fname))
  1342. {
  1343. src1 = imread(fname);
  1344. Vec3b label = src1.at<Vec3b>(0, 0);
  1345. Mat src(src1.rows, src1.cols, CV_8UC3);
  1346.  
  1347. for (int i = 0; i < src1.rows; i++)
  1348. for (int j = 0; j < src1.cols; j++) {
  1349. src.at<Vec3b>(i, j) = label;
  1350. if (src1.at<Vec3b>(i, j) != label) {
  1351. if (src1.at<Vec3b>(i - 1, j) == label | src1.at<Vec3b>(i - 1, j - 1) == label | src1.at<Vec3b>(i - 1, j + 1) == label | src1.at<Vec3b>(i, j + 1) == label
  1352. | src1.at<Vec3b>(i + 1, j - 1) == label | src1.at<Vec3b>(i + 1, j) == label | src1.at<Vec3b>(i + 1, j + 1) == label | src1.at<Vec3b>(i, j - 1) == label)
  1353. {
  1354. src.at<Vec3b>(i, j) = src1.at<Vec3b>(i, j);
  1355. }
  1356. }
  1357. }
  1358. imshow("nume", src);
  1359. waitKey(0);
  1360. }
  1361. }
  1362. void thAria() {
  1363. Mat src1;
  1364. // Read image from file
  1365. char fname[MAX_PATH];
  1366. while (openFileDlg(fname))
  1367. {
  1368. int th;
  1369. printf("th= ");
  1370. scanf("%d", &th);
  1371. src1 = imread(fname);
  1372. Vec3b label = src1.at<Vec3b>(0, 0);
  1373. Mat src(src1.rows, src1.cols, CV_8UC3);
  1374. int aria[255 + 1000 * 3];
  1375. for (int i = 0; i < 1000; i++)
  1376. aria[i] = 0;
  1377. for (int i = 0; i < (src1).rows; i++) {
  1378. for (int j = 0; j < src1.cols; j++) {
  1379. aria[src1.at<Vec3b>(i, j)[0] + src1.at<Vec3b>(i, j)[1] + src1.at<Vec3b>(i, j)[2]]++;
  1380. }
  1381. }
  1382. for (int i = 0; i < (src1).rows; i++) {
  1383. for (int j = 0; j < src1.cols; j++) {
  1384. if (aria[src1.at<Vec3b>(i, j)[0] + src1.at<Vec3b>(i, j)[1] + src1.at<Vec3b>(i, j)[2]] < th) {
  1385. src.at<Vec3b>(i, j) = src1.at<Vec3b>(i, j);
  1386. }
  1387. }
  1388. }
  1389.  
  1390.  
  1391. imshow("nume", src);
  1392. waitKey(0);
  1393. }
  1394. }
  1395.  
  1396. void imagineSeparata(int event, int x, int y, int flags, void* param) {
  1397. Mat* src = (Mat*)param;
  1398. Vec3b selectedPixel = (Vec3b)(*src).at<Vec3b>(y, x);
  1399.  
  1400.  
  1401. Mat src1 = *src;
  1402. Vec3b label = 0;
  1403.  
  1404.  
  1405. if (event == CV_EVENT_LBUTTONDOWN)
  1406. {
  1407.  
  1408. int rN, cN;
  1409.  
  1410. label = src1.at<Vec3b>(y, x);
  1411. int area = 0;
  1412. int aux_rows = 0;
  1413. int aux_cols = 0;
  1414. for (int i = 0; i < src1.rows; i++) {
  1415. for (int j = 0; j < src1.cols; j++) {
  1416. if (src1.at<Vec3b>(i, j) == label) {
  1417. area++;
  1418. aux_rows += i;
  1419. aux_cols += j;
  1420. }
  1421.  
  1422. }
  1423.  
  1424. }
  1425. int massX = aux_rows / area;
  1426. int massY = aux_cols / area;
  1427. float tan = 0.0;
  1428. int sum_cols = 0;
  1429. int sum_rows = 0;
  1430. for (int i = 0; i < src1.rows; i++) {
  1431. for (int j = 0; j < src1.cols; j++) {
  1432. if (src1.at<Vec3b>(i, j) == label) {
  1433. tan += (i - massX)*(j - massY);
  1434. sum_cols += (j - massY) ^ 2;
  1435. sum_rows += (i - massX) ^ 2;
  1436. }
  1437.  
  1438. }
  1439.  
  1440. }
  1441. float alfa = atan2(2 * tan, (sum_cols - sum_rows));
  1442. float angle = (alfa * 90) / PI;
  1443.  
  1444. int b = (int)(*src).at<Vec3b>(y, x)[0];
  1445. int g = (int)(*src).at<Vec3b>(y, x)[1];
  1446. int r = (int)(*src).at<Vec3b>(y, x)[2];
  1447. int aria = 0;
  1448.  
  1449. for (int i = 0; i < (*src).rows; i++) {
  1450. for (int j = 0; j < (*src).cols; j++) {
  1451. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1452. aria++;
  1453. }
  1454. }
  1455. }
  1456. int col = 0, row = 0;
  1457. for (int i = 0; i < (*src).rows; i++) {
  1458. for (int j = 0; j < (*src).cols; j++) {
  1459. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1460. row += i;
  1461. col += j;
  1462. }
  1463. }
  1464. }
  1465.  
  1466. rN = ((float)1 / aria)*row;
  1467. cN = ((float)1 / aria)*col;
  1468.  
  1469. if (selectedPixel == Vec3b(255, 255, 255)) {
  1470. return;
  1471. }
  1472. Mat img((*src).rows, (*src).cols, CV_8UC3, Scalar(255, 255, 255));
  1473. Vec3b pixelNegru = Vec3b(0, 0, 0);
  1474. for (int i = 1; i < src->rows - 1; i++) {
  1475. for (int j = 1; j < src->cols - 1; j++) {
  1476. if (selectedPixel == (Vec3b)(*src).at<Vec3b>(i, j)) {
  1477. if (selectedPixel != (Vec3b)(*src).at<Vec3b>(i, j - 1) ||
  1478. selectedPixel != (Vec3b)(*src).at<Vec3b>(i, j + 1) ||
  1479. selectedPixel != (Vec3b)(*src).at<Vec3b>(i - 1, j - 1) ||
  1480. selectedPixel != (Vec3b)(*src).at<Vec3b>(i - 1, j + 1) ||
  1481. selectedPixel != (Vec3b)(*src).at<Vec3b>(i - 1, j) ||
  1482. selectedPixel != (Vec3b)(*src).at<Vec3b>(i + 1, j - 1) ||
  1483. selectedPixel != (Vec3b)(*src).at<Vec3b>(i + 1, j + 1) ||
  1484. selectedPixel != (Vec3b)(*src).at<Vec3b>(i + 1, j))
  1485. {
  1486.  
  1487. img.at<Vec3b>(i, j) = pixelNegru;
  1488. }
  1489. }
  1490. if (i == rN && j == cN) {
  1491. img.at<Vec3b>(i, j) = pixelNegru;
  1492. img.at<Vec3b>(i, j - 1) = pixelNegru;
  1493. img.at<Vec3b>(i, j + 1) = pixelNegru;
  1494. img.at<Vec3b>(i - 1, j) = pixelNegru;
  1495. img.at<Vec3b>(i - 1, j - 1) = pixelNegru;
  1496. img.at<Vec3b>(i - 1, j + 1) = pixelNegru;
  1497. img.at<Vec3b>(i + 1, j) = pixelNegru;
  1498. img.at<Vec3b>(i + 1, j - 1) = pixelNegru;
  1499. img.at<Vec3b>(i + 1, j + 1) = pixelNegru;
  1500. }
  1501. }
  1502. }
  1503. Point startPoint(cN, rN);
  1504. Point endPoint(cN + 100 * cos(angle * 180 / CV_PI), rN + 100 * sin(angle * 180 / CV_PI));
  1505. line(img, startPoint, endPoint, Scalar(0, 0, 0), 1);
  1506. imshow("Desen", img);
  1507.  
  1508. // punctul c
  1509. int cmax = -1;
  1510. int cmin = 100000;
  1511. int rmax = -1;
  1512. int rmin = 100000;
  1513. for (int i = 1; i < src->rows - 1; i++) {
  1514. for (int j = 1; j < src->cols - 1; j++) {
  1515. if (selectedPixel == (Vec3b)(*src).at<Vec3b>(i, j)) {
  1516. if (cmax < j) cmax = j;
  1517. if (cmin > j) cmin = j;
  1518. if (rmax < i) rmax = i;
  1519. if (rmin > i) rmin = i;
  1520. }
  1521. }
  1522. }
  1523. int inaltimeP = rmax - rmin;
  1524. int latimeP = cmax - cmin;
  1525. int himg = 2 * inaltimeP + 300;
  1526. int wimg = 2 * latimeP + 300;
  1527. Mat proiectie(himg, wimg, CV_8UC1);
  1528.  
  1529. for (int i = 0; i < src->rows; i++) {
  1530. for (int j = 0; j < src->cols; j++) {
  1531. if (selectedPixel == (Vec3b)(*src).at<Vec3b>(i, j)) {
  1532. proiectie.at<uchar>(himg - (i - rmin + inaltimeP + 200), j - cmin + latimeP + 200) = 0;
  1533. }
  1534. }
  1535. }
  1536.  
  1537. for (int i = 50; i < himg - 50; i++) {
  1538. proiectie.at<uchar>(i, 50) = 0;
  1539. }
  1540. for (int i = 50; i < wimg - 50; i++) {
  1541. proiectie.at<uchar>(himg - 50, i) = 0;
  1542. }
  1543.  
  1544.  
  1545. //imshow("Proiectie", proiectie);
  1546. }
  1547. }
  1548.  
  1549. void computeImagineSeparata() {
  1550. Mat src;
  1551. // Read image from file
  1552. char fname[MAX_PATH];
  1553. while (openFileDlg(fname))
  1554. {
  1555. src = imread(fname);
  1556. //Create a window
  1557. namedWindow("My Window", 1);
  1558.  
  1559. //set the callback function for any mouse event
  1560. setMouseCallback("My Window", imagineSeparata, &src);
  1561.  
  1562. //show the image
  1563. imshow("My Window", src);
  1564.  
  1565. // Wait until user press some key
  1566. waitKey(0);
  1567. }
  1568. }
  1569.  
  1570.  
  1571. void computeHorizontalProjection(int event, int x, int y, int flags, void* param)
  1572. {
  1573.  
  1574. Mat* src = (Mat*)param;
  1575. if (event == CV_EVENT_LBUTTONDOWN)
  1576. {
  1577. int b = (int)(*src).at<Vec3b>(y, x)[0];
  1578. int g = (int)(*src).at<Vec3b>(y, x)[1];
  1579. int r = (int)(*src).at<Vec3b>(y, x)[2];
  1580. int * h = (int *)malloc((*src).rows * sizeof(int));
  1581. int value = 0;
  1582.  
  1583. for (int i = 0; i < (*src).rows; i++) {
  1584. for (int j = 0; j < (*src).cols; j++) {
  1585. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1586. value++;
  1587. }
  1588. }
  1589.  
  1590.  
  1591. h[i] = value;
  1592. }
  1593.  
  1594.  
  1595. printf("%d\n", h);
  1596. }
  1597. }
  1598. void computeHorizontalProjectionCallback() {
  1599. Mat src;
  1600. // Read image from file
  1601. char fname[MAX_PATH];
  1602. while (openFileDlg(fname))
  1603. {
  1604. src = imread(fname);
  1605. //Create a window
  1606. namedWindow("My Window", 1);
  1607.  
  1608. //set the callback function for any mouse event
  1609. setMouseCallback("My Window", computeHorizontalProjection, &src);
  1610.  
  1611. //show the image
  1612. imshow("My Window", src);
  1613.  
  1614. // Wait until user press some key
  1615. waitKey(0);
  1616. }
  1617. }
  1618.  
  1619. void computeVerticalProjection(int event, int x, int y, int flags, void* param)
  1620. {
  1621.  
  1622. Mat* src = (Mat*)param;
  1623. if (event == CV_EVENT_LBUTTONDOWN)
  1624. {
  1625. int b = (int)(*src).at<Vec3b>(y, x)[0];
  1626. int g = (int)(*src).at<Vec3b>(y, x)[1];
  1627. int r = (int)(*src).at<Vec3b>(y, x)[2];
  1628. int * h = (int *)malloc((*src).cols * sizeof(int));
  1629. int value = 0;
  1630.  
  1631. for (int i = 0; i < (*src).rows; i++) {
  1632. for (int j = 0; j < (*src).cols; j++) {
  1633. if ((int)(*src).at<Vec3b>(i, j)[0] == b && (int)(*src).at<Vec3b>(i, j)[1] == g && (int)(*src).at<Vec3b>(y, x)[2] == r) {
  1634. value++;
  1635. }
  1636. }
  1637.  
  1638.  
  1639. h[i] = value;
  1640. }
  1641.  
  1642.  
  1643. printf("%d\n", h);
  1644. }
  1645. }
  1646. void computeVerticalProjectionCallback() {
  1647. Mat src;
  1648. // Read image from file
  1649. char fname[MAX_PATH];
  1650. while (openFileDlg(fname))
  1651. {
  1652. src = imread(fname);
  1653. //Create a window
  1654. namedWindow("My Window", 1);
  1655.  
  1656. //set the callback function for any mouse event
  1657. setMouseCallback("My Window", computeHorizontalProjection, &src);
  1658.  
  1659. //show the image
  1660. imshow("My Window", src);
  1661.  
  1662. // Wait until user press some key
  1663. waitKey(0);
  1664. }
  1665. }
  1666.  
  1667. void Bfs() {
  1668. char fname[MAX_PATH];
  1669.  
  1670. Mat src;
  1671. while (openFileDlg(fname)) {
  1672. src = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  1673. waitKey();
  1674.  
  1675. int label = 0;
  1676. Mat labels = Mat::zeros(src.rows, src.cols, CV_32SC1);
  1677. Mat destinatie = Mat::zeros(src.rows, src.cols, CV_8UC3);
  1678.  
  1679. int di[8] = { -1, 0, 1, 0, 1, -1, 1, -1 };
  1680. int dj[8] = { 0, -1, 0, 1, 1, 1, -1, -1 };
  1681. int ni = 0;
  1682. int nj = 0;
  1683.  
  1684. for (int i = 0; i < src.rows; i++) {
  1685. for (int j = 0; j < src.cols; j++) {
  1686. if (src.at<uchar>(i, j) == 0 && labels.at<int>(i, j) == 0) {
  1687. label++;
  1688. std::queue<Point2i> Q;
  1689. labels.at<int>(i, j) = label;
  1690. Q.push({ i, j });
  1691. while (!Q.empty()) {
  1692. Point2i p = Q.front();
  1693. Q.pop();
  1694. for (int k = 0; k < 8; k++) {
  1695. ni = p.x + di[k];
  1696. nj = p.y + dj[k];
  1697. if (!(ni < 0 || ni >= src.rows || nj < 0 || nj >= src.cols)
  1698. && labels.at<int>(ni, nj) == 0 && src.at<uchar>(ni, nj) == 0) {
  1699. labels.at<int>(ni, nj) = label;
  1700. Q.push({ ni, nj });
  1701.  
  1702. }
  1703. }
  1704. }
  1705. }
  1706. }
  1707. }
  1708.  
  1709.  
  1710. std::vector<Vec3b> culori = std::vector<Vec3b>(label);
  1711.  
  1712. std::default_random_engine gen;
  1713. std::uniform_int_distribution<int> d(0, 255);
  1714. for (int i = 0; i < label; i++) {
  1715. uchar r = d(gen);
  1716. uchar g = d(gen);
  1717. uchar b = d(gen);
  1718. culori.at(i) = Vec3b(r, g, b);
  1719. }
  1720.  
  1721. for (int i = 0; i < src.rows; i++) {
  1722. for (int j = 0; j < src.cols; j++) {
  1723. if (labels.at<int>(i, j) > 0) {
  1724. destinatie.at<Vec3b>(i, j) = culori.at(labels.at<int>(i, j) - 1);
  1725. }
  1726. else {
  1727. destinatie.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
  1728. }
  1729. }
  1730. }
  1731.  
  1732.  
  1733. imshow("imagine", destinatie);
  1734. waitKey(0);
  1735. }
  1736. }
  1737.  
  1738.  
  1739. void douaTreceri() {
  1740. char fname[MAX_PATH];
  1741. openFileDlg(fname);
  1742. Mat src = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  1743.  
  1744. waitKey();
  1745. Mat labels = Mat::zeros(src.rows, src.cols, CV_32SC1);
  1746. Mat dstP = Mat::zeros(src.rows, src.cols, CV_8UC3);
  1747. Mat dstF = Mat::zeros(src.rows, src.cols, CV_8UC3);
  1748.  
  1749. int di[8] = { -1, 0, 1, 0, 1, -1, 1, -1 };
  1750. int dj[8] = { 0, -1, 0, 1, 1, 1, -1, -1 };
  1751. int label = 1;
  1752.  
  1753. for (int i = 0; i < src.rows; i++) {
  1754. for (int j = 0; j < src.cols; j++) {
  1755. if (src.at<uchar>(i, j) != 255) {
  1756. labels.at<int>(i, j) = label;
  1757. label++;
  1758. }
  1759. else
  1760. labels.at<int>(i, j) = 0;
  1761. }
  1762. }
  1763.  
  1764. for (int i = 0; i < src.rows; i++) {
  1765. for (int j = 0; j < src.cols; j++) {
  1766. if (labels.at<int>(i, j) != 0) {
  1767. int smallest = labels.at<int>(i, j);
  1768. for (int k = 0; k < 8; k++) {
  1769. if (smallest > labels.at<int>(i + di[k], j + dj[k]) && labels.at<int>(i + di[k], j + dj[k]) != 0) {
  1770. smallest = labels.at<int>(i + di[k], j + dj[k]);
  1771. }
  1772. }
  1773. labels.at<int>(i, j) = smallest;
  1774. }
  1775. }
  1776. }
  1777.  
  1778. std::vector<Vec3b> culori = std::vector<Vec3b>(label);
  1779. std::default_random_engine gen;
  1780. std::uniform_int_distribution<int> d(0, 255);
  1781. for (int i = 0; i < label; i++) {
  1782. uchar r = d(gen);
  1783. uchar g = d(gen);
  1784. uchar b = d(gen);
  1785. culori.at(i) = Vec3b(r, g, b);
  1786. }
  1787.  
  1788. for (int i = 0; i < src.rows; i++) {
  1789. for (int j = 0; j < src.cols; j++) {
  1790. if (labels.at<int>(i, j) > 0) {
  1791. dstP.at<Vec3b>(i, j) = culori.at(labels.at<int>(i, j) - 1);
  1792. }
  1793. else {
  1794. dstP.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
  1795. }
  1796. }
  1797. }
  1798. for (int i = src.rows - 1; i >= 0; i--) {
  1799. for (int j = src.cols - 1; j >= 0; j--) {
  1800. if (labels.at<int>(i, j) != 0) {
  1801. int smallest = labels.at<int>(i, j);
  1802. for (int k = 0; k < 8; k++) {
  1803. if (smallest > labels.at<int>(i + di[k], j + dj[k]) && labels.at<int>(i + di[k], j + dj[k]) != 0) {
  1804. smallest = labels.at<int>(i + di[k], j + dj[k]);
  1805. }
  1806. }
  1807. labels.at<int>(i, j) = smallest;
  1808. }
  1809. }
  1810. }
  1811.  
  1812. for (int i = 0; i < label; i++) {
  1813. uchar r = d(gen);
  1814. uchar g = d(gen);
  1815. uchar b = d(gen);
  1816. culori.at(i) = Vec3b(r, g, b);
  1817. }
  1818.  
  1819. for (int i = 0; i < src.rows; i++) {
  1820. for (int j = 0; j < src.cols; j++) {
  1821. if (labels.at<int>(i, j) > 0) {
  1822. dstF.at<Vec3b>(i, j) = culori.at(labels.at<int>(i, j) - 1);
  1823. }
  1824. else {
  1825. dstF.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
  1826. }
  1827. }
  1828. }
  1829. imshow("Partial", dstP);
  1830. imshow("Final", dstF);
  1831. waitKey(0);
  1832.  
  1833. }
  1834.  
  1835.  
  1836. void contur(Mat img) {
  1837. int difX[8] = { 0, -1, -1, -1, 0, 1, 1, 1 };
  1838. int difY[8] = { 1, 1, 0, -1, -1, -1, 0, 1 };
  1839. int dir = 7;
  1840. vector<pair<int, int>> P;
  1841. vector<int> dirs;
  1842. for (int i = 0; i < img.rows; i++) {
  1843. for (int j = 0; j < img.cols; j++) {
  1844. if (img.at<uchar>(i, j) == 0) {
  1845. P.push_back(make_pair(i, j));
  1846. goto exit_label;
  1847. }
  1848. }
  1849. }
  1850. exit_label:
  1851. while (1) {
  1852. dir % 2 == 0 ? dir = (dir + 7) % 8 : dir = (dir + 6) % 8;
  1853. for (int i = 0; i < 8; i++) {
  1854. int ndir = (dir + i) % 8;
  1855. int nx = difX[ndir] + P[P.size() - 1].first;
  1856. int ny = difY[ndir] + P[P.size() - 1].second;
  1857. if (nx >= 0 && ny >= 0 && nx <= img.rows && ny <= img.cols) {
  1858. if (img.at<uchar>(nx, ny) == 0) {
  1859. dir = ndir;
  1860. P.push_back(make_pair(nx, ny));
  1861. dirs.push_back(ndir);
  1862. break;
  1863. }
  1864. }
  1865. }
  1866. if (P[P.size() - 1] == P[0]) {
  1867. break;
  1868. }
  1869. }
  1870.  
  1871. Mat newImg(img.rows, img.cols, CV_8UC1, Scalar(255));
  1872. for (auto& it : P) {
  1873. newImg.at<uchar>(it.first, it.second) = 0;
  1874. }
  1875. for (auto& it : dirs) {
  1876. cout << it << " ";
  1877. }
  1878. vector<int> derivata;
  1879. cout << "\n\n\n";
  1880. for (int i = 1; i < dirs.size(); i++) {
  1881. derivata.push_back(((dirs[i - 1] - dirs[i]) % 8 + 8) % 8);
  1882. cout << derivata[i - 1]<<" ";
  1883. }
  1884.  
  1885. imshow("contur", newImg);
  1886. waitKey(0);
  1887. }
  1888.  
  1889. void reconstruct() {
  1890. char fname[MAX_PATH];
  1891. openFileDlg(fname);
  1892. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  1893. int difX[8] = { 0, -1, -1, -1, 0, 1, 1, 1 };
  1894. int difY[8] = { 1, 1, 0, -1, -1, -1, 0, 1 };
  1895. ifstream f("reconstruct.txt");
  1896. int x, y, n;
  1897. f >> x >> y >> n;
  1898. img.at<uchar>(x, y) = 0;
  1899. int dir;
  1900. for (int i = 0; i < n; i++) {
  1901. f >> dir;
  1902. int nx = x + difX[dir];
  1903. int ny = y + difY[dir];
  1904. if (nx >= 0 && ny >= 0 && nx < img.rows && ny < img.cols) {
  1905. img.at<uchar>(nx, ny) = 0;
  1906. }
  1907. x = nx;
  1908. y = ny;
  1909. }
  1910.  
  1911. imshow("rec", img);
  1912. waitKey(0);
  1913. }
  1914.  
  1915. Mat dilatare(Mat img, int n) {
  1916.  
  1917. Mat aux = img.clone();
  1918. int di[4] = { 0, -1, 0, 1 };
  1919. int dj[4] = { 1, 0, -1, 0 };
  1920.  
  1921. for (int i = 1; i < img.rows - 1; i++)
  1922. for (int j = 1; j < img.cols - 1; j++)
  1923. if (img.at<uchar>(i, j) == 0)
  1924. {
  1925. for (int k = 0; k < 4; k++)
  1926. aux.at<uchar>(i + di[k], j + dj[k]) = 0;
  1927. }
  1928.  
  1929. if (n == 1)
  1930. return aux;
  1931. else
  1932. return dilatare(aux, n - 1);
  1933. }
  1934.  
  1935. Mat erodare(Mat img, int n) {
  1936. Mat aux = Mat(img.rows, img.cols, CV_8UC1, Scalar(255));
  1937.  
  1938. int di[4] = { 0, -1, 0, 1 };
  1939. int dj[4] = { 1, 0, -1, 0 };
  1940.  
  1941. for (int i = 1; i < img.rows - 1; i++)
  1942. for (int j = 1; j < img.cols - 1; j++)
  1943.  
  1944. if (img.at<uchar>(i, j) == 0)
  1945. {
  1946. bool ok = true;
  1947. for (int k = 0; k < 4; k++)
  1948. if (img.at<uchar>(i + di[k], j + dj[k]) != 0)
  1949. {
  1950. ok = false;
  1951. break;
  1952. }
  1953.  
  1954.  
  1955. if (ok)
  1956. aux.at<uchar>(i, j) = 0;
  1957. }
  1958.  
  1959. if (n == 1)
  1960. return aux;
  1961. else
  1962. return erodare(aux, n - 1);
  1963. }
  1964.  
  1965. Mat deschidere(Mat img) {
  1966. Mat aux = erodare(img, 1);
  1967. return dilatare(aux, 1);
  1968. }
  1969.  
  1970. Mat inchidere(Mat img) {
  1971. Mat aux = dilatare(img, 1);
  1972. return erodare(aux, 1);
  1973. }
  1974.  
  1975. void conturMorfologic() {
  1976. char fname[MAX_PATH];
  1977. openFileDlg(fname);
  1978. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  1979. imshow("Imagine initiala", img);
  1980.  
  1981. Mat aux = erodare(img, 1);
  1982. Mat rez = Mat(img.rows, img.cols, CV_8UC1, Scalar(255));
  1983.  
  1984. for (int i = 1; i < img.rows - 1; i++)
  1985. for (int j = 1; j < img.cols - 1; j++)
  1986. if (img.at<uchar>(i, j) == 0 && aux.at<uchar>(i, j) != 0)
  1987. rez.at<uchar>(i, j) = 0;
  1988.  
  1989. imshow("Contur", rez);
  1990. waitKey(0);
  1991. }
  1992.  
  1993. void umplere() {
  1994. char fname[MAX_PATH];
  1995. openFileDlg(fname);
  1996. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  1997. Mat rez = Mat(img.rows, img.cols, CV_8UC1, Scalar(255));
  1998. rez.at<uchar>(img.rows / 2, img.cols / 2) = 0;
  1999.  
  2000. Mat aux; bool ready;
  2001. int di[4] = { 0, -1, 0, 1 };
  2002. int dj[4] = { 1, 0, -1, 0 };
  2003.  
  2004. do {
  2005. rez.copyTo(aux);
  2006.  
  2007. ready = true;
  2008. for (int i = 1; i < rez.rows - 1; i++)
  2009. for (int j = 1; j < rez.cols - 1; j++)
  2010. if (rez.at<uchar>(i, j) == 0)
  2011. {
  2012. for (int k = 0; k < 4; k++)
  2013. if (aux.at<uchar>(i + di[k], j + dj[k]) != 0 && img.at<uchar>(i + di[k], j + dj[k]) != 0) {
  2014. aux.at<uchar>(i + di[k], j + dj[k]) = 0;
  2015. ready = false;
  2016. }
  2017.  
  2018. }
  2019. aux.copyTo(rez);
  2020.  
  2021. } while (!ready);
  2022.  
  2023. for (int i = 1; i < img.rows - 1; i++)
  2024. for (int j = 1; j < img.cols - 1; j++)
  2025. if (img.at<uchar>(i, j) == 0)
  2026. rez.at<uchar>(i, j) = 0;
  2027.  
  2028. imshow("Normal image", img);
  2029. imshow("Umplere", rez);
  2030. waitKey(0);
  2031. }
  2032.  
  2033. /////////lab 8 ////////
  2034.  
  2035.  
  2036. int * histo(Mat &img) {
  2037. //char fname[MAX_PATH];
  2038. //openFileDlg(fname);
  2039. //Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2040.  
  2041. int *h = new int[256]();
  2042.  
  2043. for (int i = 0; i < img.rows; i++)
  2044. for (int j = 0; j < img.cols; j++) {
  2045. uchar g = img.at<uchar>(i, j);
  2046. h[g]++;
  2047. }
  2048.  
  2049. showHistogram("histo", h, 256, 500);
  2050. return h;
  2051. waitKey(0);
  2052. }
  2053.  
  2054. void medie() {
  2055. char fname[MAX_PATH];
  2056. openFileDlg(fname);
  2057. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2058. int *a = histo(img);
  2059.  
  2060. float p[256] = { 0 };
  2061.  
  2062. int M = img.rows*img.cols;
  2063. for (int g = 0; g < 256; g++) {
  2064. p[g] = ((float)a[g] / M);
  2065. }
  2066.  
  2067. float medie = 0;
  2068.  
  2069. for (int g = 0; g < 256; g++) {
  2070. medie += g * p[g];
  2071. }
  2072.  
  2073. printf("Medie=%.2f \n", medie);
  2074.  
  2075.  
  2076. float var = 0;
  2077.  
  2078.  
  2079.  
  2080. for (int g = 0; g < 256; g++) {
  2081. var += (g - medie)*(g - medie)*p[g];
  2082. }
  2083.  
  2084. float sigma = sqrt(var);
  2085. printf("Deviatie=%.2f \n", sigma);
  2086.  
  2087.  
  2088. getchar();
  2089. getchar();
  2090. getchar();
  2091. }
  2092.  
  2093.  
  2094. float calc_sum(int *hist, int min, int max) {
  2095. float sum = 0;
  2096. int number = 0;
  2097. for (int i = min; i < max; i++) {
  2098. sum += i * hist[i];
  2099. number += hist[i];
  2100. }
  2101. return sum / number;
  2102. }
  2103.  
  2104.  
  2105. void binarizare() {
  2106. char fname[MAX_PATH];
  2107. openFileDlg(fname);
  2108. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2109. int *a = histo(img);
  2110.  
  2111. int imax = 0;
  2112. int imin = 255;
  2113.  
  2114. for (int i = 0; i < 256; i++) {
  2115. if (a[i] != 0) {
  2116. imin = i;
  2117. break;
  2118. }
  2119.  
  2120. }
  2121.  
  2122. for (int i = 255; i > 0; i--) {
  2123. if (a[i] != 0) {
  2124. imax = i;
  2125. break;
  2126. }
  2127.  
  2128. }
  2129.  
  2130.  
  2131. float t1 = (imax + imin) / 2;
  2132. float t2 = 0.0;
  2133.  
  2134. while (t1 - t2 >= 5) {
  2135. int ug1 = calc_sum(a, 0, t1);
  2136. int ug2 = calc_sum(a, t1, 256);
  2137.  
  2138. t1 = t2;
  2139.  
  2140. t2 = (ug1 + ug2) / 2;
  2141.  
  2142. }
  2143.  
  2144.  
  2145.  
  2146. Mat dst = Mat(img.rows, img.cols, CV_8UC1);
  2147.  
  2148. for (int i = 0; i < img.rows; i++)
  2149. {
  2150. for (int j = 0; j < img.cols; j++)
  2151. {
  2152. if (img.at<uchar>(i, j) < t2) {
  2153. dst.at<uchar>(i, j) = 0;
  2154. }
  2155. else {
  2156. dst.at<uchar>(i, j) = 255;
  2157. }
  2158. }
  2159. }
  2160.  
  2161.  
  2162.  
  2163.  
  2164. imshow("dst", dst);
  2165. imshow("img", img);
  2166. waitKey(0);
  2167.  
  2168. }
  2169.  
  2170. void latire_ingustare() {
  2171.  
  2172. char fname[MAX_PATH];
  2173. openFileDlg(fname);
  2174. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2175. int *a = histo(img);
  2176.  
  2177. Mat cont = img.clone();
  2178. int goutmin, goutmax;
  2179. printf("Introduceti goutmin si g outmax: ");
  2180. scanf("%d %d", &goutmin, &goutmax);
  2181.  
  2182.  
  2183. int imax = 0;
  2184. int imin = 255;
  2185.  
  2186. for (int i = 0; i < 256; i++) {
  2187. if (a[i] != 0) {
  2188. imin = i;
  2189. break;
  2190. }
  2191.  
  2192. }
  2193.  
  2194. for (int i = 255; i > 0; i--) {
  2195. if (a[i] != 0) {
  2196. imax = i;
  2197. break;
  2198. }
  2199.  
  2200. }
  2201.  
  2202. Mat contrast = img.clone();
  2203.  
  2204. float factor = (imax - imin);
  2205. for (int i = 0; i < img.rows; i++)
  2206. for (int j = 0; j < img.cols; j++) {
  2207. float aux = goutmin + (img.at<uchar>(i, j) - imin)*(goutmax - goutmin) / factor;
  2208. contrast.at<uchar>(i, j) = (int)aux;
  2209. }
  2210. imshow("src", img);
  2211. imshow("Contrast", contrast);
  2212. waitKey(0);
  2213.  
  2214. }
  2215.  
  2216.  
  2217. void corectie_gama() {
  2218.  
  2219. char fname[MAX_PATH];
  2220. openFileDlg(fname);
  2221. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2222. int *a = histo(img);
  2223.  
  2224. Mat gama = img.clone();
  2225. float gamma;
  2226. printf("introduceti gamma: ");
  2227. scanf("%f", &gamma);
  2228.  
  2229. for (int i = 0; i < img.rows; i++)
  2230. for (int j = 0; j < img.cols; j++) {
  2231. float aux = pow((float)img.at<uchar>(i, j) / 255, gamma) * 255;
  2232. gama.at<uchar>(i, j) = (int)aux;
  2233. }
  2234.  
  2235. imshow("img", img);
  2236. imshow("gama", gama);
  2237. waitKey(0);
  2238.  
  2239. }
  2240.  
  2241. void modificare_luminozitate() {
  2242. char fname[MAX_PATH];
  2243. openFileDlg(fname);
  2244. Mat img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2245. int *a = histo(img);
  2246.  
  2247. Mat lumino = img.clone();
  2248. float luminozitate;
  2249. printf("introduceti luminozitate: ");
  2250. scanf("%f", &luminozitate);
  2251.  
  2252. for (int i = 0; i < img.rows; i++)
  2253. for (int j = 0; j < img.cols; j++) {
  2254. float aux = img.at<uchar>(i, j) + luminozitate;
  2255. if (aux > 255) {
  2256. aux = 255;
  2257. }
  2258. lumino.at<uchar>(i, j) = (int)aux;
  2259. }
  2260.  
  2261. imshow("img", img);
  2262. imshow("gama", lumino);
  2263. waitKey(0);
  2264. }
  2265.  
  2266. int main()
  2267. {
  2268. int op;
  2269. do
  2270. {
  2271. system("cls");
  2272. destroyAllWindows();
  2273. printf("Menu:\n");
  2274. printf(" 1 - Open image\n");
  2275. printf(" 2 - Open BMP images from folder\n");
  2276. printf(" 3 - Image negative - diblook style\n");
  2277. printf(" 4 - BGR->HSV\n");
  2278. printf(" 5 - Resize image\n");
  2279. printf(" 6 - Canny edge detection\n");
  2280. printf(" 7 - Edges in a video sequence\n");
  2281. printf(" 8 - Snap frame from live video\n");
  2282. printf(" 9 - Mouse callback demo\n");
  2283. printf(" 0 - Exit\n");
  2284. printf(" 10 - teo\n");
  2285. printf(" 11 - ale\n");
  2286. printf(" 12 - multi\n");
  2287. printf(" 13 - color\n");
  2288. printf(" 14 - INV\n");
  2289. printf(" 15 - Split windows\n");
  2290. printf(" 16 - Color to grayscale\n");
  2291. printf(" 17 - Grayscale to black white\n");
  2292. printf(" 18 - RGB->HSV\n");
  2293. printf(" 19 - isInside\n");
  2294. printf(" 20 - histogram\n");
  2295. printf(" 21 - praguri_multiple\n");
  2296. printf(" 22 - floyd_steinberg\n");
  2297. printf(" 24 - aria\n");
  2298. printf(" 25 - centru de masa\n");
  2299. printf(" 26 - axa de alungire\n");
  2300. printf(" 27 - perimetru\n");
  2301. printf(" 28 - factorul de subtiere al obiectului\n");
  2302. printf(" 29 - imagine Separata\n");
  2303. printf(" 30 - aria+phi\n");
  2304. printf(" 31 - proiectie orizontala\n");
  2305. printf(" 32 - proiectie verticala\n");
  2306. printf(" 33 - BFS\n");
  2307. printf(" 34 - douatreceri\n");
  2308. printf(" 35 - urmarire a conturului\n");
  2309. printf(" 36 - reconstruct\n");
  2310.  
  2311. printf(" 37 - dilatare\n");
  2312. printf(" 38 - erodare\n");
  2313. printf(" 39 - deschidere\n");
  2314. printf(" 40 - inchidere\n");
  2315. printf(" 41 - contur\n");
  2316. printf(" 42 - umplere\n");
  2317. printf(" 44 - medie\n");
  2318. printf(" 45 - contrast\n");
  2319. printf(" 46 - gama\n");
  2320. printf(" 47 - luminozitate\n");
  2321. printf(" 0 - Exit\n");
  2322. printf("Option: ");
  2323. scanf("%d", &op);
  2324. Mat img;
  2325. switch (op)
  2326. {
  2327. case 1:
  2328. testOpenImage();
  2329. break;
  2330. case 2:
  2331. testOpenImagesFld();
  2332. break;
  2333. case 3:
  2334. testParcurgereSimplaDiblookStyle(); //diblook style
  2335. break;
  2336. case 4:
  2337. //testColor2Gray();
  2338. testBGR2HSV();
  2339. break;
  2340. case 5:
  2341. testResize();
  2342. break;
  2343. case 6:
  2344. testCanny();
  2345. break;
  2346. case 7:
  2347. testVideoSequence();
  2348. break;
  2349. case 8:
  2350. testSnap();
  2351. break;
  2352. case 9:
  2353. testMouseClick();
  2354. break;
  2355. case 10:
  2356. testNegativFrumos();
  2357. break;
  2358. case 11:
  2359. testGrayScaleAdditiveFactor();
  2360. break;
  2361. case 12:
  2362. testGrayScaleMultiplyFactor();
  2363. break;
  2364. case 13:
  2365. Patrate_colorate();
  2366. break;
  2367. case 14:
  2368. matricica_inv();
  2369. break;
  2370. case 15:
  2371. split_windows();
  2372. break;
  2373. case 16:
  2374. color_to_grayscale();
  2375. break;
  2376. case 17:
  2377. grayscale_to_black_white();
  2378. break;
  2379. case 18:
  2380. rgb_to_hsv();
  2381. break;
  2382. case 19:
  2383. testIsInside();
  2384. break;
  2385. case 20:
  2386. histogram();
  2387. break;
  2388. case 21:
  2389. praguri_multiple();
  2390. break;
  2391. case 22:
  2392. floyd_steinberg();
  2393. break;
  2394. case 23:
  2395. testIsInside();
  2396. break;
  2397. case 24:
  2398. computeAria();
  2399. break;
  2400. case 25:
  2401. computeCentrulDeMasa();
  2402. break;
  2403. case 26:
  2404. computeElongation();
  2405. break;
  2406. case 27:
  2407. computePerimeter();
  2408. break;
  2409. case 28:
  2410. computeFactorDeSubtiere();
  2411. break;
  2412. case 29:
  2413. computeImagineSeparata();
  2414. break;
  2415. case 30:
  2416. thAria();
  2417. break;
  2418. case 31:
  2419. computeHorizontalProjectionCallback();
  2420. break;
  2421. case 32:
  2422. computeVerticalProjectionCallback();
  2423. break;
  2424. case 33:
  2425. Bfs();
  2426. case 34:
  2427. douaTreceri();
  2428. case 35:
  2429. img = imread("Images/oval_vert.bmp", CV_LOAD_IMAGE_GRAYSCALE);
  2430. contur(img);
  2431. break;
  2432. case 36:
  2433. //img = imread("Images/oval_vert.bmp", CV_LOAD_IMAGE_GRAYSCALE);
  2434. reconstruct();
  2435. break;
  2436. case 37:
  2437. printf("n= ");
  2438. scanf("%d", &n);
  2439.  
  2440. char fname[MAX_PATH];
  2441. openFileDlg(fname);
  2442. img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2443.  
  2444.  
  2445. imshow("Imagine normala", img);
  2446.  
  2447. imshow("Imagine dilatata", dilatare(img, n));
  2448. waitKey(0);
  2449. break;
  2450. case 38:
  2451. printf("n= ");
  2452. scanf("%d", &n);
  2453.  
  2454. //char fname[MAX_PATH];
  2455. openFileDlg(fname);
  2456. img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2457.  
  2458. //img = imread("imagini_op_morfologice_lab7/Imagini_Op_Morfologice/3_Open/cel4thr3_bw.bmp", CV_LOAD_IMAGE_GRAYSCALE);
  2459. imshow("Imagine normala", img);
  2460.  
  2461. imshow("Imagine erodata", erodare(img, n));
  2462. waitKey(0);
  2463. break;
  2464. case 39:
  2465. openFileDlg(fname);
  2466. img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2467. imshow("Imagine normala", img);
  2468.  
  2469. imshow("Deschidere", deschidere(img));
  2470. waitKey(0);
  2471. break;
  2472. case 40:
  2473. openFileDlg(fname);
  2474. img = imread(fname, CV_LOAD_IMAGE_GRAYSCALE);
  2475. imshow("Imagine normala", img);
  2476.  
  2477. imshow("Inchidere", inchidere(img));
  2478. waitKey(0);
  2479. break;
  2480. case 41:
  2481. conturMorfologic();
  2482. case 42:
  2483. umplere();
  2484. case 43:
  2485. binarizare();
  2486. case 44:
  2487. medie();
  2488. case 45:
  2489. latire_ingustare();
  2490. case 46:
  2491. corectie_gama();
  2492. case 47:
  2493. modificare_luminozitate();
  2494.  
  2495.  
  2496.  
  2497. }
  2498. } while (op != 0);
  2499. return 0;
  2500. }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement