Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}
- \usepackage{graphicx} % Required for inserting images
- \usepackage{amsmath}
- \title{Basic Trig}
- \author{lemtrees }
- \date{September 2023}
- \begin{document}
- \maketitle
- \section{Variables and Definitions}
- \begin{align*}
- H & : \text{Height of the satellite above Earth's surface (in km)} \\
- L & : \text{Length of the airplane (in feet)} \\
- A & : \text{Altitude of the airplane above sea level (in feet)} \\
- P & : \text{Percent larger the plane appears to the satellite} \\
- \theta_0 & : \text{Angle at the satellite when the plane is at sea level} \\
- D_0 & : \text{Hypotenuse of the triangle when the plane is at sea level (in feet)} \\
- \theta_A & : \text{Angle at the satellite when the plane is at altitude \( A \)} \\
- D_A & : \text{Hypotenuse of the triangle when the plane is at altitude \( A \) (in feet)}
- \end{align*}
- \newpage
- \section{Figure of Plane at Sea Level}
- \begin{figure}[h]
- \centering
- \includegraphics[width=1\linewidth]{planeatGround.png}
- \caption{Plane at Sea Level}
- \label{fig:enter-label1}
- \includegraphics[width=1\linewidth]{planeatA.png}
- \caption{Plane at altitude A}
- \label{fig:enter-label2}
- \end{figure}
- \section{Equations for Angles}
- The angle \( \theta_0 \) at the satellite when the plane is at sea level is defined as:
- \begin{equation}
- \theta_0 = \tan^{-1}\left(\frac{L}{H}\right)
- \end{equation}
- When the plane is at an altitude \( A \), the angle \( \theta_A \) at the satellite is:
- \begin{equation}
- \theta_A = \tan^{-1}\left(\frac{L}{H - A}\right)
- \end{equation}
- \section{Calculating the Percent Increase in Apparent Size}
- The percent larger \( P \) that the plane would appear to be is calculated as:
- \begin{equation}
- P = \frac{\theta_A - \theta_0}{\theta_0} \times 100
- \end{equation}
- The expanded equation for \( P \) in terms of \( H \), \( L \), and \( A \) is:
- \begin{equation}
- P = \frac{\tan^{-1}\left(\frac{L}{H - A}\right) - \tan^{-1}\left(\frac{L}{H}\right)}{\tan^{-1}\left(\frac{L}{H}\right)} \times 100
- \end{equation}
- To account for unit conversions, where \( H \) is in kilometers, and \( A \) and \( L \) are in feet, the equation for \( P \) becomes:
- \begin{equation}
- P = \frac{\tan^{-1}\left(\frac{L}{H \times 3280.84 - A}\right) - \tan^{-1}\left(\frac{L}{H \times 3280.84}\right)}{\tan^{-1}\left(\frac{L}{H \times 3280.84}\right)} \times 100
- \end{equation}
- \section{Calculation with Specific Values}
- The equation for \( P \) with \( A = 35000 \) feet, \( L = 209 \) feet, and \( H = 700 \) km is:
- \begin{equation}
- P = \frac{\tan^{-1}\left(\frac{209}{700 \times 3280.84 - 35000}\right) - \tan^{-1}\left(\frac{209}{700 \times 3280.84}\right)}{\tan^{-1}\left(\frac{209}{700 \times 3280.84}\right)} \times 100
- \end{equation}
- The calculated value for \( P \) is approximately \( 1.55\% \).
- \section{Conclusion}
- Therefore, for a satellite at \( 700 \) km above the Earth, the plane appears approximately \( 1.55\% \) larger to the satellite when the plane is at a height of \( 35000 \) feet versus sea level.
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment