Guest User

Untitled

a guest
Sep 7th, 2023
189
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.06 KB | None | 0 0
  1. \documentclass{article}
  2. \usepackage{graphicx} % Required for inserting images
  3. \usepackage{amsmath}
  4.  
  5. \title{Basic Trig}
  6. \author{lemtrees }
  7. \date{September 2023}
  8.  
  9. \begin{document}
  10.  
  11. \maketitle
  12.  
  13. \section{Variables and Definitions}
  14.  
  15. \begin{align*}
  16. H & : \text{Height of the satellite above Earth's surface (in km)} \\
  17. L & : \text{Length of the airplane (in feet)} \\
  18. A & : \text{Altitude of the airplane above sea level (in feet)} \\
  19. P & : \text{Percent larger the plane appears to the satellite} \\
  20. \theta_0 & : \text{Angle at the satellite when the plane is at sea level} \\
  21. D_0 & : \text{Hypotenuse of the triangle when the plane is at sea level (in feet)} \\
  22. \theta_A & : \text{Angle at the satellite when the plane is at altitude \( A \)} \\
  23. D_A & : \text{Hypotenuse of the triangle when the plane is at altitude \( A \) (in feet)}
  24. \end{align*}
  25.  
  26. \newpage
  27.  
  28. \section{Figure of Plane at Sea Level}
  29.  
  30. \begin{figure}[h]
  31. \centering
  32. \includegraphics[width=1\linewidth]{planeatGround.png}
  33. \caption{Plane at Sea Level}
  34. \label{fig:enter-label1}
  35.  
  36. \includegraphics[width=1\linewidth]{planeatA.png}
  37. \caption{Plane at altitude A}
  38. \label{fig:enter-label2}
  39. \end{figure}
  40.  
  41. \section{Equations for Angles}
  42.  
  43. The angle \( \theta_0 \) at the satellite when the plane is at sea level is defined as:
  44.  
  45. \begin{equation}
  46. \theta_0 = \tan^{-1}\left(\frac{L}{H}\right)
  47. \end{equation}
  48.  
  49. When the plane is at an altitude \( A \), the angle \( \theta_A \) at the satellite is:
  50.  
  51. \begin{equation}
  52. \theta_A = \tan^{-1}\left(\frac{L}{H - A}\right)
  53. \end{equation}
  54.  
  55.  
  56. \section{Calculating the Percent Increase in Apparent Size}
  57.  
  58. The percent larger \( P \) that the plane would appear to be is calculated as:
  59.  
  60. \begin{equation}
  61. P = \frac{\theta_A - \theta_0}{\theta_0} \times 100
  62. \end{equation}
  63.  
  64. The expanded equation for \( P \) in terms of \( H \), \( L \), and \( A \) is:
  65.  
  66. \begin{equation}
  67. P = \frac{\tan^{-1}\left(\frac{L}{H - A}\right) - \tan^{-1}\left(\frac{L}{H}\right)}{\tan^{-1}\left(\frac{L}{H}\right)} \times 100
  68. \end{equation}
  69.  
  70.  
  71. To account for unit conversions, where \( H \) is in kilometers, and \( A \) and \( L \) are in feet, the equation for \( P \) becomes:
  72.  
  73. \begin{equation}
  74. P = \frac{\tan^{-1}\left(\frac{L}{H \times 3280.84 - A}\right) - \tan^{-1}\left(\frac{L}{H \times 3280.84}\right)}{\tan^{-1}\left(\frac{L}{H \times 3280.84}\right)} \times 100
  75. \end{equation}
  76.  
  77.  
  78. \section{Calculation with Specific Values}
  79.  
  80. The equation for \( P \) with \( A = 35000 \) feet, \( L = 209 \) feet, and \( H = 700 \) km is:
  81.  
  82. \begin{equation}
  83. P = \frac{\tan^{-1}\left(\frac{209}{700 \times 3280.84 - 35000}\right) - \tan^{-1}\left(\frac{209}{700 \times 3280.84}\right)}{\tan^{-1}\left(\frac{209}{700 \times 3280.84}\right)} \times 100
  84. \end{equation}
  85.  
  86. The calculated value for \( P \) is approximately \( 1.55\% \).
  87.  
  88. \section{Conclusion}
  89.  
  90. Therefore, for a satellite at \( 700 \) km above the Earth, the plane appears approximately \( 1.55\% \) larger to the satellite when the plane is at a height of \( 35000 \) feet versus sea level.
  91.  
  92.  
  93. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment