Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- typedef double db;
- const db EPS = 1e-9;
- inline int sign(db a) { return a < -EPS ? -1 : a > EPS; }
- inline int cmp(db a, db b){ return sign(a-b); }
- struct P {
- db x, y;
- P() {}
- P(db _x, db _y) : x(_x), y(_y) {}
- P operator+(P p) { return {x + p.x, y + p.y}; }
- P operator-(P p) { return {x - p.x, y - p.y}; }
- P operator*(db d) { return {x * d, y * d}; }
- P operator/(db d) { return {x / d, y / d}; }
- bool operator<(P p) const {
- int c = cmp(x, p.x);
- if (c) return c == -1;
- return cmp(y, p.y) == -1;
- }
- bool operator==(P o) const{
- return cmp(x,o.x) == 0 && cmp(y,o.y) == 0;
- }
- db dot(P p) { return x * p.x + y * p.y; }
- db det(P p) { return x * p.y - y * p.x; }
- db distTo(P p) { return (*this-p).abs(); }
- db alpha() { return atan2(y, x); }
- void read() { cin>>x>>y; }
- void write() {cout<<"("<<x<<","<<y<<")"<<endl;}
- db abs() { return sqrt(abs2());}
- db abs2() { return x * x + y * y; }
- P rot90() { return P(-y,x);}
- P unit() { return *this/abs(); }
- int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
- P rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; }
- };
- struct L{ //ps[0] -> ps[1]
- P ps[2];
- P& operator[](int i) { return ps[i]; }
- P dir() { return ps[1] - ps[0]; }
- L (P a,P b) {
- ps[0]=a;
- ps[1]=b;
- }
- bool include(P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; }
- L push(){ // push eps outward
- const double eps = 1e-8;
- P delta = (ps[1] - ps[0]).rot90().unit() * eps;
- return {ps[0] + delta, ps[1] + delta};
- }
- };
- #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
- #define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
- bool chkLL(P p1, P p2, P q1, P q2) {
- db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
- return sign(a1+a2) != 0;
- }
- P isLL(P p1, P p2, P q1, P q2) {
- db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
- return (p1 * a2 + p2 * a1) / (a1 + a2);
- }
- P isLL(L l1,L l2){ return isLL(l1[0],l1[1],l2[0],l2[1]); }
- bool intersect(db l1,db r1,db l2,db r2){
- if(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2);
- return !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 );
- }
- bool isSS(P p1, P p2, P q1, P q2){
- return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) &&
- crossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1)
- * crossOp(q1,q2,p2) <= 0;
- }
- bool isSS_strict(P p1, P p2, P q1, P q2){
- return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1)
- * crossOp(q1,q2,p2) < 0;
- }
- bool isMiddle(db a, db m, db b) {
- return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
- }
- bool isMiddle(P a, P m, P b) {
- return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
- }
- bool onSeg(P p1, P p2, P q){
- return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);
- }
- bool onSeg_strict(P p1, P p2, P q){
- return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0;
- }
- P proj(P p1, P p2, P q) {
- P dir = p2 - p1;
- return p1 + dir * (dir.dot(q - p1) / dir.abs2());
- }
- P reflect(P p1, P p2, P q){
- return proj(p1,p2,q) * 2 - q;
- }
- db nearest(P p1,P p2,P q){
- if (p1==p2) return p1.distTo(q);
- P h = proj(p1,p2,q);
- if(isMiddle(p1,h,p2))
- return q.distTo(h);
- return min(p1.distTo(q),p2.distTo(q));
- }
- db disSS(P p1, P p2, P q1, P q2){
- if(isSS(p1,p2,q1,q2)) return 0;
- return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2)));
- }
- db rad(P p1,P p2){
- return atan2l(p1.det(p2),p1.dot(p2));
- }
- db incircle(P p1, P p2, P p3){
- db A = p1.distTo(p2);
- db B = p2.distTo(p3);
- db C = p3.distTo(p1);
- return sqrtl(A*B*C/(A+B+C));
- }
- //polygon
- db area(vector<P> ps){
- db ret = 0; rep(i,0,ps.size()) ret += ps[i].det(ps[(i+1)%ps.size()]);
- return ret/2;
- }
- int contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside
- int n = ps.size(), ret = 0;
- rep(i,0,n){
- P u=ps[i],v=ps[(i+1)%n];
- if(onSeg(u,v,p)) return 1;
- if(cmp(u.y,v.y)<=0) swap(u,v);
- if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue;
- ret ^= crossOp(p,u,v) > 0;
- }
- return ret*2;
- }
- vector<P> convexHull(vector<P> ps) {
- int n = ps.size(); if(n <= 1) return ps;
- sort(ps.begin(), ps.end());
- vector<P> qs(n * 2); int k = 0;
- for (int i = 0; i < n; qs[k++] = ps[i++])
- while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k;
- for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
- while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k;
- qs.resize(k - 1);
- return qs;
- }
- vector<P> convexHullNonStrict(vector<P> ps) {
- //caution: need to unique the Ps first
- int n = ps.size(); if(n <= 1) return ps;
- sort(ps.begin(), ps.end());
- vector<P> qs(n * 2); int k = 0;
- for (int i = 0; i < n; qs[k++] = ps[i++])
- while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k;
- for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--])
- while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k;
- qs.resize(k - 1);
- return qs;
- }
- db convexDiameter(vector<P> ps){
- int n = ps.size(); if(n <= 1) return 0;
- int is = 0, js = 0; rep(k,1,n) is = ps[k]<ps[is]?k:is, js = ps[js] < ps[k]?k:js;
- int i = is, j = js;
- db ret = ps[i].distTo(ps[j]);
- do{
- if((ps[(i+1)%n]-ps[i]).det(ps[(j+1)%n]-ps[j]) >= 0)
- (++j)%=n;
- else
- (++i)%=n;
- ret = max(ret,ps[i].distTo(ps[j]));
- }while(i!=is || j!=js);
- return ret;
- }
- vector<P> convexCut(const vector<P>&ps, P q1, P q2) {
- vector<P> qs;
- int n = ps.size();
- rep(i,0,n){
- P p1 = ps[i], p2 = ps[(i+1)%n];
- int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2,p2);
- if(d1 >= 0) qs.pb(p1);
- if(d1 * d2 < 0) qs.pb(isLL(p1,p2,q1,q2));
- }
- return qs;
- }
- //min_dist
- db min_dist(vector<P>&ps,int l,int r){
- if(r-l<=5){
- db ret = 1e100;
- rep(i,l,r) rep(j,l,i) ret = min(ret,ps[i].distTo(ps[j]));
- return ret;
- }
- int m = (l+r)>>1;
- db ret = min(min_dist(ps,l,m),min_dist(ps,m,r));
- vector<P> qs; rep(i,l,r) if(abs(ps[i].x-ps[m].x)<= ret) qs.pb(ps[i]);
- sort(qs.begin(), qs.end(),[](P a,P b) -> bool {return a.y<b.y; });
- rep(i,1,qs.size()) for(int j=i-1;j>=0&&qs[j].y>=qs[i].y-ret;--j)
- ret = min(ret,qs[i].distTo(qs[j]));
- return ret;
- }
- int type(P o1,db r1,P o2,db r2){
- db d = o1.distTo(o2);
- if(cmp(d,r1+r2) == 1) return 4;
- if(cmp(d,r1+r2) == 0) return 3;
- if(cmp(d,abs(r1-r2)) == 1) return 2;
- if(cmp(d,abs(r1-r2)) == 0) return 1;
- return 0;
- }
- vector<P> isCL(P o,db r,P p1,P p2){
- if (cmp(abs((o-p1).det(p2-p1)/p1.distTo(p2)),r)>0) return {};
- db x = (p1-o).dot(p2-p1), y = (p2-p1).abs2(), d = x * x - y * ((p1-o).abs2() - r*r);
- d = max(d,(db)0.0); P m = p1 - (p2-p1)*(x/y), dr = (p2-p1)*(sqrt(d)/y);
- return {m-dr,m+dr}; //along dir: p1->p2
- }
- vector<P> isCC(P o1, db r1, P o2, db r2) { //need to check whether two circles are the same
- db d = o1.distTo(o2);
- if (cmp(d, r1 + r2) == 1) return {};
- if (cmp(d,abs(r1-r2))==-1) return {};
- d = min(d, r1 + r2);
- db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y);
- P dr = (o2 - o1).unit();
- P q1 = o1 + dr * y, q2 = dr.rot90() * x;
- return {q1-q2,q1+q2};//along circle 1
- }
- vector<P> tanCP(P o, db r, P p) {
- db x = (p - o).abs2(), d = x - r * r;
- if (sign(d) <= 0) return {}; // on circle => no tangent
- P q1 = o + (p - o) * (r * r / x);
- P q2 = (p - o).rot90() * (r * sqrt(d) / x);
- return {q1-q2,q1+q2}; //counter clock-wise
- }
- vector<L> extanCC(P o1, db r1, P o2, db r2) {
- vector<L> ret;
- if (cmp(r1, r2) == 0) {
- P dr = (o2 - o1).unit().rot90() * r1;
- ret.pb(L(o1 + dr, o2 + dr)), ret.pb(L(o1 - dr, o2 - dr));
- } else {
- P p = (o2 * r1 - o1 * r2) / (r1 - r2);
- vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p);
- rep(i,0,min(ps.size(),qs.size())) ret.pb(L(ps[i], qs[i])); //c1 counter-clock wise
- }
- return ret;
- }
- vector<L> intanCC(P o1, db r1, P o2, db r2) {
- vector<L> ret;
- P p = (o1 * r2 + o2 * r1) / (r1 + r2);
- vector<P> ps = tanCP(o1,r1,p), qs = tanCP(o2,r2,p);
- rep(i,0,min(ps.size(),qs.size())) ret.pb(L(ps[i], qs[i])); //c1 counter-clock wise
- return ret;
- }
- db areaCT(db r, P p1, P p2){
- vector<P> is = isCL(P(0,0),r,p1,p2);
- if(is.empty()) return r*r*rad(p1,p2)/2;
- bool b1 = cmp(p1.abs2(),r*r) == 1, b2 = cmp(p2.abs2(), r*r) == 1;
- if(b1 && b2){
- if(sign((p1-is[0]).dot(p2-is[0])) <= 0 &&
- sign((p1-is[0]).dot(p2-is[0])) <= 0)
- return r*r*(rad(p1,is[0]) + rad(is[1],p2))/2 + is[0].det(is[1])/2;
- else return r*r*rad(p1,p2)/2;
- }
- if(b1) return (r*r*rad(p1,is[0]) + is[0].det(p2))/2;
- if(b2) return (p1.det(is[1]) + r*r*rad(is[1],p2))/2;
- return p1.det(p2)/2;
- }
- bool parallel(L l0, L l1) { return sign( l0.dir().det( l1.dir() ) ) == 0; }
- bool sameDir(L l0, L l1) { return parallel(l0, l1) && sign(l0.dir().dot(l1.dir()) ) == 1; }
- bool cmp (P a, P b) {
- if (a.quad() != b.quad()) {
- return a.quad() < b.quad();
- } else {
- return sign( a.det(b) ) > 0;
- }
- }
- bool operator < (L l0, L l1) {
- if (sameDir(l0, l1)) {
- return l1.include(l0[0]);
- } else {
- return cmp( l0.dir(), l1.dir() );
- }
- }
- bool check(L u, L v, L w) {
- return w.include(isLL(u,v));
- }
- vector<P> halfPlaneIS(vector<L> &l) {
- sort(l.begin(), l.end());
- deque<L> q;
- for (int i = 0; i < (int)l.size(); ++i) {
- if (i && sameDir(l[i], l[i - 1])) continue;
- while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i])) q.pop_back();
- while (q.size() > 1 && !check(q[1], q[0], l[i])) q.pop_front();
- q.push_back(l[i]);
- }
- while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0])) q.pop_back();
- while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1])) q.pop_front();
- vector<P> ret;
- for (int i = 0; i < (int)q.size(); ++i) ret.push_back(isLL(q[i], q[(i + 1) % q.size()]));
- return ret;
- }
- P inCenter(P A, P B, P C) {
- double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs();
- return (A * a + B * b + C * c) / (a + b + c);
- }
- P circumCenter(P a, P b, P c) {
- P bb = b - a, cc = c - a;
- double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc);
- return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d;
- }
- P othroCenter(P a, P b, P c) {
- P ba = b - a, ca = c - a, bc = b - c;
- double Y = ba.y * ca.y * bc.y,
- A = ca.x * ba.y - ba.x * ca.y,
- x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
- y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
- return {x0, y0};
- }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement