Guest User

Untitled

a guest
Feb 19th, 2018
56
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.08 KB | None | 0 0
  1. \section{Question 2}
  2. \subsection{a)}
  3. \[
  4. \begin{array}{l l}
  5. \frac{dy_{1}}{dt} = y_{1}(t) + 3y_{2}(t) \\
  6. \frac{dy_{2}}{dt} = 2y_{1}(t) + 2y_{2}(t)
  7. \end{array}
  8. \]
  9. Substitute in
  10. \[
  11. y_{1}(t) = 3e^{-t} + 2e^{4t}
  12. \]
  13. and
  14. \[
  15. y_{2}(t) = -2e^{-t} + 2e^{3t}
  16. \]
  17. then...
  18. \[
  19. \begin{array}{l l}
  20. \frac{dy_{1}}{dt} = -3e^{-t} + 8e^{4t} \\
  21. \frac{dy_{2}}{dt} = 2e^{-t} + 8e^{4t}
  22. \end{array}
  23. \]
  24. So...
  25. First for $\frac{dy_{1}}{dt}$
  26. \[
  27. \begin{array}{l l}
  28. y_{1}(t) + 3y_{2}(t) & \implies (3e^{-t} + 2e^{4t}) + 3(-2e^{-t}) + 2e^{4t}) \\
  29. & ... \\
  30. & = e^{-t}(3 - 6) + e^{4t}(2+6) \\
  31. & = -3e^{-t} + 8e^{4t} \\
  32. & = \frac{dy_{1}}{dt}
  33. \end{array}
  34. \]
  35. Secondly, for $\frac{dy_{2}}{dt}$
  36. \[
  37. \begin{array}{l l}
  38. 2y_{1}(t) + 2y_{2}(t) & \implies 2(3e^{-t} + 2e^{4t}) + 2(-2e^{-t}+ 2e^{4t}) \\
  39. & ... \\
  40. & = e^{-t}(6-4) + e^{4t}(4+4) \\
  41. & = -2e^{-t} + 8e^{4t} \\
  42. & = \frac{dy_{2}}{dt}
  43. \end{array}
  44. \]
  45.  
  46. \[ y_{1}(0) = 3e^{0} + 2e^{0} = 3+2 = 5 \]
  47. \[ y_{2}(0) = -2e^{0} + 2e^{0} = -2+2 = 0 \]
  48.  
  49. Therefore we know that both $y_{1}$ and $y_{2}$ are solutions to the system given
Add Comment
Please, Sign In to add comment