Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- lfw_dataset = ImageFolder(os.path.join(root_dir), transform=test_transform)
- lfw_dataset_train, lfw_dataset_val = torch.utils.data.random_split(lfw_dataset_train1, [train_values, validation_values])
- train_loader = DataLoader(lfw_dataset_train, batch_size, num_workers=4, shuffle=True)
- val_loader = DataLoader(lfw_dataset_val, batch_size, num_workers=4, shuffle=False)
- # Define dictionary of loaders
- loaders = {"train": train_loader,
- "val": val_loader}
- positive_list= []
- negative_list= []
- positive_img = []
- negative_img = []
- for i, (input, labels) in enumerate(loaders["train"]):
- for num, x in enumerate(labels):
- target = x.item()
- k = [i for i, (imgs, label_pos) in enumerate(lfw_dataset.imgs) if label_pos==target]
- group_pos = (target, k)
- positive_list.append(group_pos)
- for i, (imgs, label_neg) in enumerate(lfw_dataset.imgs):
- if label_neg!=target:
- j = [i]
- break
- group_neg = (target, j)
- negative_list.append(group_neg)
- anchor_img=input[num]
- positive = random.choice(positive_list[num][1])
- negative = random.choice(negative_list[num][1])
- positive_img.append(lfw_dataset[positive][0])
- negative_img.append(lfw_dataset[negative][0])
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement