Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- version: "3.8"
- # Configurations for hardware-accelerated machine learning
- # If using Unraid or another platform that doesn't allow multiple Compose files,
- # you can inline the config for a backend by copying its contents
- # into the immich-machine-learning service in the docker-compose.yml file.
- # See https://immich.app/docs/features/ml-hardware-acceleration for info on usage.
- services:
- armnn:
- devices:
- - /dev/mali0:/dev/mali0
- volumes:
- - /lib/firmware/mali_csffw.bin:/lib/firmware/mali_csffw.bin:ro # Mali firmware for your chipset (not always required depending on the driver)
- - /usr/lib/libmali.so:/usr/lib/libmali.so:ro # Mali driver for your chipset (always required)
- cpu: {}
- cuda:
- devices:
- - /dev/dri:/dev/dri
- deploy:
- resources:
- reservations:
- devices:
- - driver: nvidia
- count: 1
- capabilities: [gpu]
- openvino:
- device_cgroup_rules:
- - "c 189:* rmw"
- devices:
- - /dev/dri:/dev/dri
- volumes:
- - /dev/bus/usb:/dev/bus/usb
- openvino-wsl:
- devices:
- - /dev/dri:/dev/dri
- - /dev/dxg:/dev/dxg
- volumes:
- - /dev/bus/usb:/dev/bus/usb
- - /usr/lib/wsl:/usr/lib/wsl
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement