Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- function [J grad] = nnCostFunction(nn_params, ...
- input_layer_size, ...
- hidden_layer_size, ...
- num_labels, ...
- X, y, lambda)
- %NNCOSTFUNCTION Implements the neural network cost function for a two layer
- %neural network which performs classification
- % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
- % X, y, lambda) computes the cost and gradient of the neural network. The
- % parameters for the neural network are "unrolled" into the vector
- % nn_params and need to be converted back into the weight matrices.
- %
- % The returned parameter grad should be a "unrolled" vector of the
- % partial derivatives of the neural network.
- %
- % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
- % for our 2 layer neural network
- Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
- hidden_layer_size, (input_layer_size + 1));
- Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
- num_labels, (hidden_layer_size + 1));
- % Setup some useful variables
- m = size(X, 1);
- % You need to return the following variables correctly
- J = 0;
- Theta1_grad = zeros(size(Theta1));
- Theta2_grad = zeros(size(Theta2));
- % ====================== YOUR CODE HERE ======================
- % Instructions: You should complete the code by working through the
- % following parts.
- %
- % Part 1: Feedforward the neural network and return the cost in the
- % variable J. After implementing Part 1, you can verify that your
- % cost function computation is correct by verifying the cost
- % computed in ex4.m
- %
- % Part 2: Implement the backpropagation algorithm to compute the gradients
- % Theta1_grad and Theta2_grad. You should return the partial derivatives of
- % the cost function with respect to Theta1 and Theta2 in Theta1_grad and
- % Theta2_grad, respectively. After implementing Part 2, you can check
- % that your implementation is correct by running checkNNGradients
- %
- % Note: The vector y passed into the function is a vector of labels
- % containing values from 1..K. You need to map this vector into a
- % binary vector of 1's and 0's to be used with the neural network
- % cost function.
- %
- % Hint: We recommend implementing backpropagation using a for-loop
- % over the training examples if you are implementing it for the
- % first time.
- %
- % Part 3: Implement regularization with the cost function and gradients.
- %
- % Hint: You can implement this around the code for
- % backpropagation. That is, you can compute the gradients for
- % the regularization separately and then add them to Theta1_grad
- % and Theta2_grad from Part 2.
- %
- %
- %X = [ones(size(X, 1), 1) X];
- p = zeros(size(X, 1), 1);
- h1 = sigmoid([ones(m, 1) X] * Theta1');
- h2 = sigmoid([ones(m, 1) h1] * Theta2');
- tempy = zeros(m, num_labels);
- for k = 1:num_labels
- tempy(:, k) = (y == k);
- endfor
- K = num_labels;
- for i = 1:m
- % iterativ
- %for k = 1:K
- % temp_y = (y == k);
- % J += -temp_y(i) * log(h2(i,k)) - (1 - temp_y(i)) * log(1 - h2(i,k));
- %endfor
- %vectorizat
- J += sum(-tempy(i, :) * log(h2(i, :)') - (1 - tempy(i, :)) * log(1 - h2(i, :)'));
- endfor
- J = J/m;
- %vectorizat
- J += lambda/(2*m) * (sum(sum(Theta1(:, 2:end) .* Theta1(:, 2:end)), 2) + sum(sum(Theta2(:, 2:end) .* Theta2(:, 2:end)), 2));
- JCost = 0;
- %for j = 1:25
- % iterativ
- %for k = 2:401
- %JCost += Theta1(j,k)*Theta1(j,k);
- %endfor
- %vectorized
- % JCost += sum(Theta1(j, 2:end) .* Theta1(j, 2:end));
- %endfor
- %for j = 1:10
- %iterativ
- %for k = 2:26
- %JCost += Theta2(j,k)*Theta2(j,k);
- %endfor
- %vectorized
- % JCost += sum(Theta2(j, 2:end) .* Theta2(j, 2:end));
- %endfor
- % -------------------------------------------------------------
- Delta_1 = zeros(size(Theta1));
- Delta_2 = zeros(size(Theta2));
- for t = 1:m
- % Pasul 1
- a_1 = [1 ; X(t, :)'];
- z_2 = Theta1 * a_1;
- a_2 = [1 ; sigmoid(z_2)];
- z_3 = Theta2 * a_2;
- a_3 = sigmoid(z_3);
- % Pasul 2
- delta_3 = zeros(num_labels, 1);
- for k = 1:num_labels
- delta_3(k) = a_3(k) - (y == k)(t);
- endfor
- % Pasul 3
- delta_2 = (Theta2)' * delta_3 .* sigmoidGradient([1; z_2]);
- delta_2 = delta_2(2:end);
- Delta_1 = Delta_1 + delta_2 * (a_1');
- Delta_2 = Delta_2 + delta_3 * (a_2');
- endfor
- % =========================================================================
- Theta1_grad(:, 1) = Delta_1(:, 1) ./ m;
- Theta2_grad(:, 1) = Delta_2(:, 1) ./ m;
- Theta1_grad(:, 2:end) = Delta_1(:, 2:end) ./ m + lambda/m .* Theta1(:, 2:end);
- Theta2_grad(:, 2:end) = Delta_2(:, 2:end) ./ m + lambda/m .* Theta2(:, 2:end);
- % Unroll gradients
- grad = [Theta1_grad(:) ; Theta2_grad(:)];
- end
Advertisement
Add Comment
Please, Sign In to add comment