Advertisement
Guest User

Untitled

a guest
Jun 18th, 2019
516
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 16.67 KB | None | 0 0
  1. Les premiers travaux sur la vapeur d'eau et son utilisation remontent à l'Antiquité : Héron d'Alexandrie conçut et construisit au ier siècle son éolipyle qui, bien que considérée comme un jouet du fait de sa faible puissance, n'en était pas moins un moteur à vapeur, à réaction.
  2.  
  3. Au xixe siècle, un archiviste espagnol affirma avoir découvert des documents qui prouvaient qu'en 1543, dans le port de Barcelone, un navigateur et inventeur espagnol, Blasco de Garay fit sous les yeux de nombreux hauts personnages, dont Charles Quint, la démonstration d'un bateau propulsé par la vapeur d'un chaudron et des roues à aubes. Ces déclarations furent toutefois discréditées par les autorités espagnoles, les documents n'ayant pu être retrouvés.
  4.  
  5. Il fallut attendre le xviie siècle pour que réapparaisse l'idée d'utiliser la puissance de la vapeur d'eau. En 1601, Giambattista della Porta améliora l'utilisation de la force d'expansion de la vapeur d'eau.[réf. nécessaire] En 1606 Jerónimo de Ayanz y Beaumont en Espagne, utilisa la vapeur pour propulser un fluide (l'eau accumulée dans les mines) dans une buse1 en flots continus puis, en 1615, le Français Salomon de Caus décrit une pompe capable de chasser l'eau d'un récipient2.
  6.  
  7. En 1629, Giovanni Branca suggéra l'idée de moulins mus par la vapeur et, l'année suivante, David Ramseye obtint un brevet pour une pompe mue par un « moteur à feu ».
  8.  
  9. En 1663, le marquis de Worcester améliora le projet de Caus en équipant la chambre à vapeur d'un condenseur ; dans son atelier de Vauxhall, il fit adapter à cette fin un fût de canon par un artisan saxon, Kaspar Kalthoff3, mais il mourut avant d'avoir pu mettre ses idées en pratique.
  10.  
  11. En 1668, le jésuite flamand Ferdinand Verbiest décrivit dans son livre le premier véhicule terrestre mû par un jet de vapeur et une roue à aubes.
  12.  
  13. En 1679, le Français Denis Papin construit la première chaudière (utilisée comme autocuiseur), fermée par la première soupape. Conscient du potentiel de la vapeur, il propose l'idée du piston, qui donnerait accès à des puissances insoupçonnées jusqu'alors. Son prototype, en 1690, reste inefficace.
  14.  
  15. En 1698, Thomas Savery déposa un brevet sur une pompe destinée à l'exploitation minière, fonctionnant à la vapeur, directement inspirée des travaux de Edward Somerset. Par la suite, il la perfectionna en collaboration avec Thomas Newcomen, grâce, entre autres, aux travaux de Denis Papin. Un premier modèle commercial fut utilisé dès 1712 dans les mines de charbon, près de Dudley, dans le centre de l'Angleterre. Ces pompes fonctionnaient en produisant un vide dans une chambre fermée où l'on faisait se condenser de la vapeur, grâce à un jet d'eau. Les vannes d'admission et d'échappement, d'abord à commande manuelle, furent automatisées par Henry Beighton, en 1718. Ces pompes étaient d'emploi courant dans toutes les mines humides de l'Europe. Elles étaient cependant très coûteuses à l'usage, car leur cylindre devait être réchauffé avant chaque admission de vapeur.
  16.  
  17.  
  18. Machine à vapeur Millot.
  19. Machine à vapeur de James Watt
  20. Article connexe : Machine de Watt.
  21. L'Écossais James Watt (1736-1819) répara un moteur Newcomen en 1763 : il cherchait alors des idées d'amélioration pour en augmenter l'efficacité. Ses réflexions débouchèrent en 1765 sur l'idée d'une chambre de condensation pour la vapeur séparée du cylindre principal par une valve, idée pour laquelle il déposa un brevet en 1769. Il commença alors à produire des moteurs améliorés avec le financement de Matthew Boulton.
  22.  
  23. En 1765, aux mines d'argent de Barnaoul, le Russe Polzounov imagine de coupler deux cylindres pour exploiter les cycles compression-détente, et munit son moteur d'un régulateur à flotteur pour maintenir constant le niveau d'eau dans le circuit4 : c'est le premier régulateur d'une machine à vapeur.
  24.  
  25. En 1770, le Français Cugnot construisit le premier véhicule automobile terrestre, un fardier, destiné à la traction de pièces d'artillerie. Ce prototype sans postérité utilisait un moteur de type Newcomen. Les performances du véhicule étaient insuffisantes pour un usage opérationnel.
  26.  
  27. Parallèlement, James Watt continua à chercher des idées pour améliorer son invention, et, en 1781 il mit au point un système mécanique permettant de créer un mouvement de rotation à partir du mouvement rectiligne du piston, ce qui lui permit ensuite de concevoir le cylindre à double action où la vapeur entraîne le piston, lors de sa montée et de sa descente. La puissance de la machine en était fortement augmentée.
  28.  
  29. Il formalisa aussi une utilisation possible en 1784 en déposant un brevet sur une locomotive à vapeur, inventa un indicateur de pression de la vapeur dans le cylindre, et, en 1788, une valve de puissance pour laquelle il reprit ensuite l'idée de Boulton d'employer un régulateur centrifuge pour rendre la vitesse constante indépendamment des variations de la production de vapeur et des sollicitations de puissance en sortie. Il introduisit aussi une nouvelle unité de mesure de la puissance, le cheval-vapeur.
  30.  
  31. Certains lui reprochent d'avoir freiné le développement des systèmes à haute pression fonctionnant par l'expansion de la vapeur, auxquels il ne croyait pas, mais qui étaient prônés par d'autres inventeurs comme Jonathan Hornblower, et qui durent attendre l'expiration des brevets en 1800, après leur prolongation en 1782. Ce dernier mit au point, en 1781, un double cylindre combiné où la vapeur passe d'abord dans un cylindre dans lequel elle pousse le piston avant de passer dans un cylindre fonctionnant selon le principe de la condensation qui équivaut à un système à double action. Mais son invention resta expérimentale, sans application possible du fait des brevets de Watt, et il fallut attendre les années 1797-1799 avec Richard Trevithick et 1803 avec Arthur Woolf pour la voir émerger enfin. Combiné à un nouveau type de condenseur conçu par Edmund Cartwright qui enveloppait le cylindre et l'apparition des chaudières produisant de la vapeur à haute pression, cela permit la fabrication de machines compactes et puissantes, nécessaires à une utilisation mobile.
  32.  
  33. Machine à vapeur haute pression de Richard Trevithick
  34.  
  35. Locomotive de Trevithick (1804), premier succès d'une locomotive à vapeur sur rail.
  36. L'ingénieur des mines Richard Trevithick mit au point, entre 1797 et 1799, une machine à vapeur haute pression en supprimant le condenseur, avec échappement dans l'atmosphère, ce qui augmentait la puissance mais aussi le risque d'explosion. Ces machines devinrent plus compactes et plus simples. Portatives, elles pouvaient être installées sur des bateaux, dans des fermes pour battre le blé, dans des moulins ou de petites fabriques5. Trevithick orienta ses machines routières (des locomotives sur route) rapidement vers le rail compte tenu de leur poids et de l'état des routes. Il construisit la première locomotive à vapeur sur rails en 1803, la faisant rouler en 1804. Elle pouvait « remorquer un train de wagons chargé de 10 tonnes de fer et de 70 hommes, parcourant 14 kilomètres en quatre heures et cinq minutes6 ».
  37.  
  38. Système de mise en marche
  39. Par l'intermédiaire d'un système de tiroir de distribution, ouvrant et fermant des lumières, la vapeur d'eau sous pression est envoyée à une extrémité d'un cylindre, où elle pousse un piston. Ce dernier entraîne la bielle qui est articulée dessus et fixée sur le volant d'inertie en un point excentré de son axe de rotation. Son mouvement provoque donc une rotation du volant.
  40.  
  41.  
  42. Tiroir à vapeur
  43. Du volant repart une biellette commandant le tiroir d'admission et d'échappement. Quand le piston arrive au bout du cylindre, la biellette repousse le tiroir :
  44.  
  45. Dans le cas du cylindre simple effet, le tiroir referme la lumière d'entrée de la vapeur et du même côté ouvre une autre lumière pour laisser s'échapper la vapeur contenue dans le cylindre. Le volant, par l'énergie cinétique accumulée, continue de tourner, repoussant ainsi le piston au point de départ.
  46. Dans un cylindre à double effet, le tiroir ouvre, en plus, une lumière d'admission pour la vapeur de l'autre côté, elle repousse le piston qui continue sa poussée sur le volant.
  47. Sur ce volant, on place une courroie établissant une liaison élastique avec la poulie d'entrée d'une machine transformant ce mouvement en un travail spécifique. Pour être utilisable industriellement, cette énergie doit le plus souvent être régulée, afin que la vitesse de rotation ne dépende ni des aléas de la chauffe, ni surtout de la sollicitation de puissance en sortie. C'est là qu'intervient le régulateur centrifuge mis au point par Watt, qui agit directement sur la vanne par laquelle la vapeur arrive de la chaudière.
  48.  
  49.  
  50. Centrale électrique de l'Usine des Forges de Montataire au début du xxe siècle : au fond, la machine à vapeur, qui entraîne, par l’intermédiaire du volant d'inertie, une dynamo (à droite)
  51. Technologie et raffinements
  52. Avec la généralisation de son emploi, la machine à vapeur va connaître toute une série de perfectionnements destinés à améliorer son efficacité et sa puissance, en utilisant les pressions de plus en plus importantes fournies par les chaudières.
  53.  
  54. Double action
  55. La double action inventée par Watt devient d'emploi général, elle permet un gros gain de puissance en éliminant la phase où le piston se comporte comme un frein, celui-ci est alors moteur à l'aller et au retour. Sur les moteurs fonctionnant par l'expansion de la vapeur, il est poussé alternativement par les deux chambres d'expansion qu'il délimite. Le système d'alimentation à tiroir a alors pour rôle de déclencher soit l'alimentation, soit l'échappement pour les deux chambres.
  56.  
  57. Description du fonctionnement
  58. L'arrivée et l'échappement de la vapeur des deux côtés du cylindre est réglée par le tiroir de distribution (6). Le piston est relié à la crosse qui, par l'intermédiaire de la bielle motrice, transforme le mouvement de va-et-vient en mouvement circulaire. Ce mouvement est transmis à toutes les roues motrices grâce aux bielles d'accouplement. Le réglage du tiroir de distribution pour inverser la marche s'effectue au moyen du volant de commande de la vis de changement de marche (8) qui se trouve dans la cabine de conduite.
  59.  
  60. Travail de la distribution (modèle de distribution Walschaerts)
  61.  
  62. C'est par le tiroir (6) que la vapeur est admise dans le cylindre (7) et agit alternativement sur chacune des faces du piston. La tige de piston actionne la bielle couplée au train de roues motrices par l'intermédiaire de la crosse articulée (5). Les roues couplées deviennent toutes motrices. Par l'intermédiaire de la contre-manivelle (2) calée à 90° de la manivelle motrice, une bielle fait osciller la coulisse (1) de distribution dans laquelle glisse la bielle de commande de tiroir (3). Couplée au levier d'avance (4)a
  63. Expansion multiple
  64.  
  65. Animation simplifiée d'un moteur à triple expansion.
  66. Au cours du xixe siècle, la pression disponible à la sortie des chaudières augmentant, on finit par utiliser plusieurs cylindres de taille croissante, où la vapeur passe successivement au fur et à mesure de sa détente. On vit ainsi d'abord les machines à double expansion comme les locomotives compound, puis celles à triple expansion comportant respectivement deux et trois cylindres dénommés cylindre à haute, moyenne et basse pression. L'expansion multiple permit une amélioration significative du rendement des moteurs à vapeur, et de l'autonomie des navires utilisant cette technologie.
  67.  
  68. Les deux ou trois cylindres entraînaient un arbre moteur commun ; une variante comportait deux cylindres à basse pression, les quatre cylindres étant alors arrangés dans une configuration en V.
  69.  
  70. Les machines à expansion multiple sont parfois appelées moteur à pilon.
  71.  
  72. L'ingénieur écossais William McNaught (en) breveta un moteur à double effet en 1845. Sur le cylindre d'une machine de type Boulton & Watt, il brancha un cylindre à haute pression, comprimé par l'autre extrémité du balancier, où l'on fixait normalement la pompe d'eau à actionner. Il en résulta deux effets importants : la force sur le balancier était considérablement réduite, et la conduite de vapeur d'eau, par sa longueur, faisait fonction d'enceinte d'expansion, élément manquant dans les machines Woolf7. Il était ainsi devenu possible de modifier les machines Watt après-coup, et les machines ainsi modifiées étaient dites McNaughted. Les avantages du moteur compound ne devenaient sensibles que pour des pressions supérieures à 7 bars.
  73.  
  74. Condensation
  75. Afin d'améliorer le rendement il faut que la source froide soit à une température et une pression la plus basse possible, ce qui est réalisé en ramenant l'eau à son état liquide en la condensant8. Cette technologie du condenseur est particulièrement importante dans les applications navales et ferroviaires, car elle permet de réutiliser l'essentiel de l'eau par condensation de la vapeur après utilisation dans les cylindres, évitant ainsi d'avoir à emporter de grandes réserves d'eau, comme les réservoirs qui existaient sur les installations fixes. L'inconvénient de cette technique est le poids et l'encombrement du condenseur. Les tenders à condenseurs sont surtout utilisés sur des lignes ferroviaires où l'eau est rare ou la distance à parcourir, sans arrêt, importante.
  76.  
  77. Chaudière tubulaire
  78. 2017-fr.wp-orange-source.svg
  79. Cette section ne cite pas suffisamment ses sources (mai 2017).
  80. Article détaillé : Chaudière tubulaire.
  81.  
  82. Chaudière tubulaire neuve destinée à la locomotive Pinguely 030T du Chemin de fer de la baie de Somme, vue depuis sa boîte à fumée
  83. Inventée par Charles Dallery vers 1780, la chaudière tubulaire a des tubes pleins d’eau chauffés extérieurement par les gaz brûlants de la chaudière.
  84.  
  85. En 1824, Marc Seguin choisit de chauffer les tubes par l’intérieur, l'eau étant autour de ceux-ci, multipliant ainsi par six la puissance du moteur. La chaudière tubulaire de Marc Seguin, conçue à l'origine pour équiper un bateau de halage sur le Rhône, trouve sa première application pratique sur la locomotive à vapeur qu'il utilise sur le chemin de fer de Saint-Étienne à Lyon.
  86.  
  87. Flot unique
  88.  
  89. Schéma de fonctionnement d'une machine à vapeur à flot unique
  90. Inventé par Jacob Perkins en 1827, ce modèle se caractérise par l'emploi de soupapes et d'arbre à cames, tout comme les moteurs à explosion, pour la circulation de vapeur : il présente l'avantage d'éviter de faire passer la vapeur chaude et celle détendue par le même emplacement, et aussi d'être plus économe en vapeur.
  91.  
  92. Ayant une lumière d'échappement en fin de course, le fonctionnement du piston à flot unique (uniflow) doit recompresser la vapeur résiduelle du cylindre, avec une perte correspondant au défaut de réversibilité. De plus, la recompression de la vapeur résiduelle fait restriction à l'écoulement initial de vapeur dans le cylindre, alors que le troncage de la course au point bas raccourcit le cycle de détente.
  93.  
  94. Type rotatif
  95. C'est une variante issue des recherches récentes sur la Quasiturbine.
  96.  
  97. Injecteur Giffard
  98.  
  99. Injecteur Giffard
  100. Un des problèmes du moteur à vapeur, c'est d'alimenter la chaudière en eau neuve.
  101.  
  102. Les méthodes traditionnelles faisaient appel soit à un réservoir placé en hauteur, soit à une pompe entraînée par le moteur.
  103.  
  104. Henri Giffard invente en 1858 un injecteur actionné par la vapeur, sans pièce mobile ni perte d'énergie (l'énergie de la vapeur est intégralement récupérée dans l'eau d'admission).
  105.  
  106. Notes et références
  107. Notes
  108. ↑ Le déplacement de la bielle sur la coulisse permet de régler le décalage entre les déplacements du tiroir et ceux du piston. On peut ainsi régler le rapport puissance/vitesse du moteur et également changer de sens de rotation.
  109. Références
  110. ↑ Karel Davids et Carolus A. Davids, Religion, Technology, and the Great and Little Divergences: China and Europe Compared, C. 700-1800, Brill, 2012 (ISBN 9789004233881).
  111. ↑ Les Raisons des forces mouvantes, avec diverses machines tant utiles que plaisantes, Francfort, Jan Norton, 1615.
  112. ↑ « Edward Somerset, Second Marquis of Worcester (1601–1667) » [archive], sur Worcester's steam engine (consulté le 25 août 2010)
  113. ↑ Extrait de M. Méerov, Y. Mikhaïlov et V. Friedman (trad. V. Polonski), Principes de la commande automatique, Éditions Mir, 1979 (réimpr. 1983), p. 8.
  114. ↑ Charles Dollfus, Encyclopédie de la vitesse, Hachette, 1956, p. 9.
  115. ↑ Olivier Bachet, Le patrimoine de la SNCF et des chemins de fer français, Flohic, 1999, p. 21.
  116. ↑ Hills 1989, p. 157
  117. ↑ Importance du vide au condenseur [archive], sur thermodynamique.com, consulté le 18 mai 2017
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement