Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- 2023-03-27 05:19:43.377
- Skip rewriting leaf module
- Skip rewriting leaf module
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\tracer\acc_tracer\acc_tracer.py:584: UserWarning: acc_tracer does not support currently support models for training. Calling eval on model before tracing.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\tracer\acc_tracer\acc_tracer.py:584: UserWarning: acc_tracer does not support currently support models for training. Calling eval on model before tracing.
- warnings.warn(
- Skip rewriting leaf module
- Skip rewriting leaf module
- == Log pass before/after graph to C:\Users\Selur\AppData\Local\Temp\tmpjmqoifyb, before/after are the same = False
- == Log pass before/after graph to C:\Users\Selur\AppData\Local\Temp\tmpjmqoifyb, before/after are the same = False
- == Log pass before/after graph to C:\Users\Selur\AppData\Local\Temp\tmpu2_5tp_s, before/after are the same = True
- == Log pass before/after graph to C:\Users\Selur\AppData\Local\Temp\tmpu2_5tp_s, before/after are the same = True
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_319
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_319
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_326
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_326
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_329
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_329
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_331
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_331
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_332
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_332
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_339
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_339
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_342
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_342
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_344
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_344
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_345
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_345
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_352
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_352
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_355
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_355
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_357
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_357
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_358
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_358
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_365
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_365
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_368
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_368
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_370
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_370
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_371
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_371
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_378
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_378
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_381
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_381
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_383
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_383
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_384
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_384
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_391
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_391
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_394
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_394
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_396
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_396
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_397
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_397
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_398
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_398
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_405
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_405
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_408
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_408
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_410
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_410
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_411
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_411
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_418
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_418
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_421
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_421
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_423
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_423
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_424
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_424
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_431
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_431
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_434
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_434
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_436
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_436
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_437
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_437
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_444
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_444
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_447
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_447
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_449
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_449
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_450
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_450
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_457
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_457
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_460
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_460
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_462
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_462
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_463
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_463
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_470
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_470
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_473
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_473
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_475
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_475
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_476
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_476
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_477
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_477
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_484
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_484
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_487
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_487
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_489
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_489
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_490
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_490
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_497
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_497
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_500
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_500
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_502
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_502
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_503
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_503
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_510
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_510
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_513
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_513
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_515
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_515
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_516
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_516
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_523
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_523
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_526
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_526
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_528
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_528
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_529
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_529
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_536
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_536
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_539
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_539
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_541
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_541
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_542
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_542
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_549
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_549
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_552
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_552
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_554
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_554
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_555
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_555
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_556
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_556
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_563
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_563
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_566
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_566
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_568
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_568
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_569
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_569
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_576
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_576
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_579
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_579
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_581
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_581
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_582
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_582
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_589
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_589
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_592
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_592
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_594
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_594
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_595
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_595
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_602
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_602
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_605
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_605
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_607
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_607
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_608
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_608
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_615
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_615
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_618
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_618
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_620
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_620
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_621
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_621
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_628
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_628
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_631
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_631
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_633
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_633
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_634
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_634
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_635
- : Found bad pattern: y.reshape((x, ...)). Reshape node: reshape_635
- Now lowering submodule _run_on_acc_0
- Now lowering submodule _run_on_acc_0
- split_name=_run_on_acc_0, input_specs=[InputTensorSpec(shape=torch.Size([1, 3, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_0, input_specs=[InputTensorSpec(shape=torch.Size([1, 3, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:19:52.711
- TRT INetwork construction elapsed time: 0:00:00.007916
- TRT INetwork construction elapsed time: 0:00:00.007916
- Build TRT engine elapsed time: 0:00:01.467011
- Build TRT engine elapsed time: 0:00:01.467011
- Lowering submodule _run_on_acc_0 elapsed time 0:00:06.490400
- Lowering submodule _run_on_acc_0 elapsed time 0:00:06.490400
- Now lowering submodule _run_on_acc_2
- Now lowering submodule _run_on_acc_2
- split_name=_run_on_acc_2, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_2, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.002721
- TRT INetwork construction elapsed time: 0:00:00.002721
- 2023-03-27 05:20:13.327
- Build TRT engine elapsed time: 0:00:19.097724
- Build TRT engine elapsed time: 0:00:19.097724
- Lowering submodule _run_on_acc_2 elapsed time 0:00:19.127441
- Lowering submodule _run_on_acc_2 elapsed time 0:00:19.127441
- Now lowering submodule _run_on_acc_4
- Now lowering submodule _run_on_acc_4
- split_name=_run_on_acc_4, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_4, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.000997
- TRT INetwork construction elapsed time: 0:00:00.000997
- Build TRT engine elapsed time: 0:00:01.871680
- Build TRT engine elapsed time: 0:00:01.871680
- Lowering submodule _run_on_acc_4 elapsed time 0:00:01.900656
- Lowering submodule _run_on_acc_4 elapsed time 0:00:01.900656
- Now lowering submodule _run_on_acc_6
- Now lowering submodule _run_on_acc_6
- split_name=_run_on_acc_6, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_6, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.000997
- TRT INetwork construction elapsed time: 0:00:00.000997
- Build TRT engine elapsed time: 0:00:01.830022
- Build TRT engine elapsed time: 0:00:01.830022
- Lowering submodule _run_on_acc_6 elapsed time 0:00:01.859147
- Lowering submodule _run_on_acc_6 elapsed time 0:00:01.859147
- Now lowering submodule _run_on_acc_8
- Now lowering submodule _run_on_acc_8
- split_name=_run_on_acc_8, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_8, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.003000
- TRT INetwork construction elapsed time: 0:00:00.003000
- 2023-03-27 05:20:19.471
- Build TRT engine elapsed time: 0:00:02.317220
- Build TRT engine elapsed time: 0:00:02.317220
- Lowering submodule _run_on_acc_8 elapsed time 0:00:02.347223
- Lowering submodule _run_on_acc_8 elapsed time 0:00:02.347223
- Now lowering submodule _run_on_acc_10
- Now lowering submodule _run_on_acc_10
- split_name=_run_on_acc_10, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_10, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.000999
- TRT INetwork construction elapsed time: 0:00:00.000999
- Build TRT engine elapsed time: 0:00:01.354626
- Build TRT engine elapsed time: 0:00:01.354626
- Lowering submodule _run_on_acc_10 elapsed time 0:00:01.382135
- Lowering submodule _run_on_acc_10 elapsed time 0:00:01.382135
- Now lowering submodule _run_on_acc_12
- Now lowering submodule _run_on_acc_12
- split_name=_run_on_acc_12, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_12, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.001000
- TRT INetwork construction elapsed time: 0:00:00.001000
- Build TRT engine elapsed time: 0:00:01.378106
- Build TRT engine elapsed time: 0:00:01.378106
- Lowering submodule _run_on_acc_12 elapsed time 0:00:01.407108
- Lowering submodule _run_on_acc_12 elapsed time 0:00:01.407108
- Now lowering submodule _run_on_acc_14
- Now lowering submodule _run_on_acc_14
- split_name=_run_on_acc_14, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_14, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.000999
- TRT INetwork construction elapsed time: 0:00:00.000999
- Build TRT engine elapsed time: 0:00:01.380241
- Build TRT engine elapsed time: 0:00:01.380241
- Lowering submodule _run_on_acc_14 elapsed time 0:00:01.410777
- Lowering submodule _run_on_acc_14 elapsed time 0:00:01.410777
- Now lowering submodule _run_on_acc_16
- Now lowering submodule _run_on_acc_16
- split_name=_run_on_acc_16, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_16, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.003001
- TRT INetwork construction elapsed time: 0:00:00.003001
- Build TRT engine elapsed time: 0:00:01.396178
- Build TRT engine elapsed time: 0:00:01.396178
- Lowering submodule _run_on_acc_16 elapsed time 0:00:01.426690
- Lowering submodule _run_on_acc_16 elapsed time 0:00:01.426690
- Now lowering submodule _run_on_acc_18
- Now lowering submodule _run_on_acc_18
- split_name=_run_on_acc_18, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 3840]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_18, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 3840]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:20:25.185
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:20:25.191
- TRT INetwork construction elapsed time: 0:00:00.010184
- TRT INetwork construction elapsed time: 0:00:00.010184
- 2023-03-27 05:20:43.247
- Build TRT engine elapsed time: 0:00:18.049577
- Build TRT engine elapsed time: 0:00:18.049577
- Lowering submodule _run_on_acc_18 elapsed time 0:00:18.085758
- Lowering submodule _run_on_acc_18 elapsed time 0:00:18.085758
- Now lowering submodule _run_on_acc_20
- Now lowering submodule _run_on_acc_20
- split_name=_run_on_acc_20, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_20, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_144 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_144 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_145 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_145 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_146 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_146 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_147 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_147 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.033131
- TRT INetwork construction elapsed time: 0:00:00.033131
- Build TRT engine elapsed time: 0:00:00.472221
- Build TRT engine elapsed time: 0:00:00.472221
- Lowering submodule _run_on_acc_20 elapsed time 0:00:00.534362
- Lowering submodule _run_on_acc_20 elapsed time 0:00:00.534362
- Now lowering submodule _run_on_acc_22
- Now lowering submodule _run_on_acc_22
- split_name=_run_on_acc_22, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_22, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_148 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_148 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_149 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_149 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021358
- TRT INetwork construction elapsed time: 0:00:00.021358
- 2023-03-27 05:20:48.278
- Build TRT engine elapsed time: 0:00:04.422826
- Build TRT engine elapsed time: 0:00:04.422826
- Lowering submodule _run_on_acc_22 elapsed time 0:00:04.474202
- Lowering submodule _run_on_acc_22 elapsed time 0:00:04.474202
- Now lowering submodule _run_on_acc_24
- Now lowering submodule _run_on_acc_24
- split_name=_run_on_acc_24, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_24, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:20:48.317
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:20:48.335
- TRT INetwork construction elapsed time: 0:00:00.019704
- TRT INetwork construction elapsed time: 0:00:00.019704
- 2023-03-27 05:20:58.364
- Build TRT engine elapsed time: 0:00:10.021728
- Build TRT engine elapsed time: 0:00:10.021728
- Lowering submodule _run_on_acc_24 elapsed time 0:00:10.068910
- Lowering submodule _run_on_acc_24 elapsed time 0:00:10.068910
- Now lowering submodule _run_on_acc_26
- Now lowering submodule _run_on_acc_26
- split_name=_run_on_acc_26, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_26, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_150 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_150 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_151 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_151 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_152 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_152 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_153 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_153 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.031840
- TRT INetwork construction elapsed time: 0:00:00.031840
- Build TRT engine elapsed time: 0:00:00.403447
- Build TRT engine elapsed time: 0:00:00.403447
- Lowering submodule _run_on_acc_26 elapsed time 0:00:00.465066
- Lowering submodule _run_on_acc_26 elapsed time 0:00:00.465066
- Now lowering submodule _run_on_acc_28
- Now lowering submodule _run_on_acc_28
- split_name=_run_on_acc_28, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_28, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_154 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_154 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_155 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_155 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.020004
- TRT INetwork construction elapsed time: 0:00:00.020004
- 2023-03-27 05:21:03.309
- Build TRT engine elapsed time: 0:00:04.404170
- Build TRT engine elapsed time: 0:00:04.404170
- Lowering submodule _run_on_acc_28 elapsed time 0:00:04.457413
- Lowering submodule _run_on_acc_28 elapsed time 0:00:04.457413
- Now lowering submodule _run_on_acc_30
- Now lowering submodule _run_on_acc_30
- split_name=_run_on_acc_30, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_30, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:21:03.352
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:21:03.370
- TRT INetwork construction elapsed time: 0:00:00.019124
- TRT INetwork construction elapsed time: 0:00:00.019124
- 2023-03-27 05:21:13.399
- Build TRT engine elapsed time: 0:00:10.022734
- Build TRT engine elapsed time: 0:00:10.022734
- Lowering submodule _run_on_acc_30 elapsed time 0:00:10.072859
- Lowering submodule _run_on_acc_30 elapsed time 0:00:10.072859
- Now lowering submodule _run_on_acc_32
- Now lowering submodule _run_on_acc_32
- split_name=_run_on_acc_32, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_32, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_156 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_156 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_157 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_157 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_158 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_158 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_159 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_159 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.033510
- TRT INetwork construction elapsed time: 0:00:00.033510
- Build TRT engine elapsed time: 0:00:00.410851
- Build TRT engine elapsed time: 0:00:00.410851
- Lowering submodule _run_on_acc_32 elapsed time 0:00:00.474359
- Lowering submodule _run_on_acc_32 elapsed time 0:00:00.474359
- Now lowering submodule _run_on_acc_34
- Now lowering submodule _run_on_acc_34
- split_name=_run_on_acc_34, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_34, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_160 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_160 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_161 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_161 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021186
- TRT INetwork construction elapsed time: 0:00:00.021186
- 2023-03-27 05:21:18.137
- Build TRT engine elapsed time: 0:00:04.182155
- Build TRT engine elapsed time: 0:00:04.182155
- Lowering submodule _run_on_acc_34 elapsed time 0:00:04.237904
- Lowering submodule _run_on_acc_34 elapsed time 0:00:04.237904
- Now lowering submodule _run_on_acc_36
- Now lowering submodule _run_on_acc_36
- split_name=_run_on_acc_36, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_36, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:21:18.181
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:21:18.199
- TRT INetwork construction elapsed time: 0:00:00.018492
- TRT INetwork construction elapsed time: 0:00:00.018492
- 2023-03-27 05:21:28.173
- Build TRT engine elapsed time: 0:00:09.965197
- Build TRT engine elapsed time: 0:00:09.965197
- Lowering submodule _run_on_acc_36 elapsed time 0:00:10.016874
- Lowering submodule _run_on_acc_36 elapsed time 0:00:10.016874
- Now lowering submodule _run_on_acc_38
- Now lowering submodule _run_on_acc_38
- split_name=_run_on_acc_38, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_38, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_162 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_162 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_163 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_163 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_164 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_164 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_165 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_165 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.035506
- TRT INetwork construction elapsed time: 0:00:00.035506
- Build TRT engine elapsed time: 0:00:00.409342
- Build TRT engine elapsed time: 0:00:00.409342
- Lowering submodule _run_on_acc_38 elapsed time 0:00:00.477063
- Lowering submodule _run_on_acc_38 elapsed time 0:00:00.477063
- Now lowering submodule _run_on_acc_40
- Now lowering submodule _run_on_acc_40
- split_name=_run_on_acc_40, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_40, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_166 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_166 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_167 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_167 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021001
- TRT INetwork construction elapsed time: 0:00:00.021001
- 2023-03-27 05:21:32.882
- Build TRT engine elapsed time: 0:00:04.148708
- Build TRT engine elapsed time: 0:00:04.148708
- Lowering submodule _run_on_acc_40 elapsed time 0:00:04.206795
- Lowering submodule _run_on_acc_40 elapsed time 0:00:04.206795
- Now lowering submodule _run_on_acc_42
- Now lowering submodule _run_on_acc_42
- split_name=_run_on_acc_42, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_42, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:21:32.927
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:21:32.946
- TRT INetwork construction elapsed time: 0:00:00.019506
- TRT INetwork construction elapsed time: 0:00:00.019506
- 2023-03-27 05:21:42.970
- Build TRT engine elapsed time: 0:00:10.017006
- Build TRT engine elapsed time: 0:00:10.017006
- Lowering submodule _run_on_acc_42 elapsed time 0:00:10.069570
- Lowering submodule _run_on_acc_42 elapsed time 0:00:10.069570
- Now lowering submodule _run_on_acc_44
- Now lowering submodule _run_on_acc_44
- split_name=_run_on_acc_44, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_44, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_168 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_168 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_169 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_169 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_170 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_170 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_171 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_171 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.034506
- TRT INetwork construction elapsed time: 0:00:00.034506
- Build TRT engine elapsed time: 0:00:00.427618
- Build TRT engine elapsed time: 0:00:00.427618
- Lowering submodule _run_on_acc_44 elapsed time 0:00:00.496209
- Lowering submodule _run_on_acc_44 elapsed time 0:00:00.496209
- Now lowering submodule _run_on_acc_46
- Now lowering submodule _run_on_acc_46
- split_name=_run_on_acc_46, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_46, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_172 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_172 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_173 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_173 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021894
- TRT INetwork construction elapsed time: 0:00:00.021894
- 2023-03-27 05:21:47.799
- Build TRT engine elapsed time: 0:00:04.246928
- Build TRT engine elapsed time: 0:00:04.246928
- Lowering submodule _run_on_acc_46 elapsed time 0:00:04.305896
- Lowering submodule _run_on_acc_46 elapsed time 0:00:04.305896
- Now lowering submodule _run_on_acc_48
- Now lowering submodule _run_on_acc_48
- split_name=_run_on_acc_48, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_48, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:21:47.845
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:21:47.865
- TRT INetwork construction elapsed time: 0:00:00.020405
- TRT INetwork construction elapsed time: 0:00:00.020405
- 2023-03-27 05:21:58.114
- Build TRT engine elapsed time: 0:00:10.241350
- Build TRT engine elapsed time: 0:00:10.241350
- Lowering submodule _run_on_acc_48 elapsed time 0:00:10.294995
- Lowering submodule _run_on_acc_48 elapsed time 0:00:10.294995
- Now lowering submodule _run_on_acc_50
- Now lowering submodule _run_on_acc_50
- split_name=_run_on_acc_50, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_50, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_174 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_174 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_175 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_175 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_176 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_176 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_177 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_177 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.035008
- TRT INetwork construction elapsed time: 0:00:00.035008
- Build TRT engine elapsed time: 0:00:00.426671
- Build TRT engine elapsed time: 0:00:00.426671
- Lowering submodule _run_on_acc_50 elapsed time 0:00:00.496741
- Lowering submodule _run_on_acc_50 elapsed time 0:00:00.496741
- Now lowering submodule _run_on_acc_52
- Now lowering submodule _run_on_acc_52
- split_name=_run_on_acc_52, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_52, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_178 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_178 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_179 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_179 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022005
- TRT INetwork construction elapsed time: 0:00:00.022005
- 2023-03-27 05:22:02.946
- Build TRT engine elapsed time: 0:00:04.249548
- Build TRT engine elapsed time: 0:00:04.249548
- Lowering submodule _run_on_acc_52 elapsed time 0:00:04.307900
- Lowering submodule _run_on_acc_52 elapsed time 0:00:04.307900
- Now lowering submodule _run_on_acc_54
- Now lowering submodule _run_on_acc_54
- split_name=_run_on_acc_54, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_54, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:22:02.991
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:22:03.002
- TRT INetwork construction elapsed time: 0:00:00.011003
- TRT INetwork construction elapsed time: 0:00:00.011003
- 2023-03-27 05:22:13.196
- Build TRT engine elapsed time: 0:00:10.185831
- Build TRT engine elapsed time: 0:00:10.185831
- Lowering submodule _run_on_acc_54 elapsed time 0:00:10.230870
- Lowering submodule _run_on_acc_54 elapsed time 0:00:10.230870
- Now lowering submodule _run_on_acc_56
- Now lowering submodule _run_on_acc_56
- split_name=_run_on_acc_56, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_56, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:22:13.238
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:22:13.247
- TRT INetwork construction elapsed time: 0:00:00.010002
- TRT INetwork construction elapsed time: 0:00:00.010002
- 2023-03-27 05:22:16.968
- Build TRT engine elapsed time: 0:00:03.713161
- Build TRT engine elapsed time: 0:00:03.713161
- Lowering submodule _run_on_acc_56 elapsed time 0:00:03.757133
- Lowering submodule _run_on_acc_56 elapsed time 0:00:03.757133
- Now lowering submodule _run_on_acc_58
- Now lowering submodule _run_on_acc_58
- split_name=_run_on_acc_58, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_58, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_180 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_180 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_181 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_181 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_182 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_182 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_183 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_183 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.036506
- TRT INetwork construction elapsed time: 0:00:00.036506
- Build TRT engine elapsed time: 0:00:00.424042
- Build TRT engine elapsed time: 0:00:00.424042
- Lowering submodule _run_on_acc_58 elapsed time 0:00:00.494137
- Lowering submodule _run_on_acc_58 elapsed time 0:00:00.494137
- Now lowering submodule _run_on_acc_60
- Now lowering submodule _run_on_acc_60
- split_name=_run_on_acc_60, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_60, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_184 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_184 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_185 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_185 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021507
- TRT INetwork construction elapsed time: 0:00:00.021507
- 2023-03-27 05:22:21.761
- Build TRT engine elapsed time: 0:00:04.211298
- Build TRT engine elapsed time: 0:00:04.211298
- Lowering submodule _run_on_acc_60 elapsed time 0:00:04.271451
- Lowering submodule _run_on_acc_60 elapsed time 0:00:04.271451
- Now lowering submodule _run_on_acc_62
- Now lowering submodule _run_on_acc_62
- split_name=_run_on_acc_62, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_62, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:22:21.808
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:22:21.828
- TRT INetwork construction elapsed time: 0:00:00.020001
- TRT INetwork construction elapsed time: 0:00:00.020001
- 2023-03-27 05:22:31.858
- Build TRT engine elapsed time: 0:00:10.021450
- Build TRT engine elapsed time: 0:00:10.021450
- Lowering submodule _run_on_acc_62 elapsed time 0:00:10.077401
- Lowering submodule _run_on_acc_62 elapsed time 0:00:10.077401
- Now lowering submodule _run_on_acc_64
- Now lowering submodule _run_on_acc_64
- split_name=_run_on_acc_64, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_64, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_186 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_186 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_187 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_187 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_188 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_188 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_189 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_189 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.036505
- TRT INetwork construction elapsed time: 0:00:00.036505
- Build TRT engine elapsed time: 0:00:00.421742
- Build TRT engine elapsed time: 0:00:00.421742
- Lowering submodule _run_on_acc_64 elapsed time 0:00:00.493351
- Lowering submodule _run_on_acc_64 elapsed time 0:00:00.493351
- Now lowering submodule _run_on_acc_66
- Now lowering submodule _run_on_acc_66
- split_name=_run_on_acc_66, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_66, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_190 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_190 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_191 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_191 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021504
- TRT INetwork construction elapsed time: 0:00:00.021504
- 2023-03-27 05:22:36.642
- Build TRT engine elapsed time: 0:00:04.201128
- Build TRT engine elapsed time: 0:00:04.201128
- Lowering submodule _run_on_acc_66 elapsed time 0:00:04.260797
- Lowering submodule _run_on_acc_66 elapsed time 0:00:04.260797
- Now lowering submodule _run_on_acc_68
- Now lowering submodule _run_on_acc_68
- split_name=_run_on_acc_68, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_68, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:22:36.689
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:22:36.708
- TRT INetwork construction elapsed time: 0:00:00.020005
- TRT INetwork construction elapsed time: 0:00:00.020005
- 2023-03-27 05:22:46.710
- Build TRT engine elapsed time: 0:00:09.994147
- Build TRT engine elapsed time: 0:00:09.994147
- Lowering submodule _run_on_acc_68 elapsed time 0:00:10.048280
- Lowering submodule _run_on_acc_68 elapsed time 0:00:10.048280
- Now lowering submodule _run_on_acc_70
- Now lowering submodule _run_on_acc_70
- split_name=_run_on_acc_70, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_70, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_192 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_192 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_193 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_193 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_194 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_194 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_195 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_195 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037005
- TRT INetwork construction elapsed time: 0:00:00.037005
- Build TRT engine elapsed time: 0:00:00.435881
- Build TRT engine elapsed time: 0:00:00.435881
- Lowering submodule _run_on_acc_70 elapsed time 0:00:00.507967
- Lowering submodule _run_on_acc_70 elapsed time 0:00:00.507967
- Now lowering submodule _run_on_acc_72
- Now lowering submodule _run_on_acc_72
- split_name=_run_on_acc_72, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_72, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_196 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_196 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_197 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_197 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022005
- TRT INetwork construction elapsed time: 0:00:00.022005
- 2023-03-27 05:22:51.571
- Build TRT engine elapsed time: 0:00:04.264076
- Build TRT engine elapsed time: 0:00:04.264076
- Lowering submodule _run_on_acc_72 elapsed time 0:00:04.324360
- Lowering submodule _run_on_acc_72 elapsed time 0:00:04.324360
- Now lowering submodule _run_on_acc_74
- Now lowering submodule _run_on_acc_74
- split_name=_run_on_acc_74, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_74, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:22:51.618
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:22:51.637
- TRT INetwork construction elapsed time: 0:00:00.020490
- TRT INetwork construction elapsed time: 0:00:00.020490
- 2023-03-27 05:23:01.792
- Build TRT engine elapsed time: 0:00:10.146359
- Build TRT engine elapsed time: 0:00:10.146359
- Lowering submodule _run_on_acc_74 elapsed time 0:00:10.201391
- Lowering submodule _run_on_acc_74 elapsed time 0:00:10.201391
- Now lowering submodule _run_on_acc_76
- Now lowering submodule _run_on_acc_76
- split_name=_run_on_acc_76, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_76, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_198 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_198 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_199 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_199 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_200 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_200 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_201 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_201 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037009
- TRT INetwork construction elapsed time: 0:00:00.037009
- Build TRT engine elapsed time: 0:00:00.419433
- Build TRT engine elapsed time: 0:00:00.419433
- Lowering submodule _run_on_acc_76 elapsed time 0:00:00.491929
- Lowering submodule _run_on_acc_76 elapsed time 0:00:00.491929
- Now lowering submodule _run_on_acc_78
- Now lowering submodule _run_on_acc_78
- split_name=_run_on_acc_78, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_78, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_202 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_202 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_203 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_203 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022006
- TRT INetwork construction elapsed time: 0:00:00.022006
- 2023-03-27 05:23:06.598
- Build TRT engine elapsed time: 0:00:04.224634
- Build TRT engine elapsed time: 0:00:04.224634
- Lowering submodule _run_on_acc_78 elapsed time 0:00:04.284197
- Lowering submodule _run_on_acc_78 elapsed time 0:00:04.284197
- Now lowering submodule _run_on_acc_80
- Now lowering submodule _run_on_acc_80
- split_name=_run_on_acc_80, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_80, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:23:06.644
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:23:06.664
- TRT INetwork construction elapsed time: 0:00:00.019939
- TRT INetwork construction elapsed time: 0:00:00.019939
- 2023-03-27 05:23:16.660
- Build TRT engine elapsed time: 0:00:09.987888
- Build TRT engine elapsed time: 0:00:09.987888
- Lowering submodule _run_on_acc_80 elapsed time 0:00:10.041882
- Lowering submodule _run_on_acc_80 elapsed time 0:00:10.041882
- Now lowering submodule _run_on_acc_82
- Now lowering submodule _run_on_acc_82
- split_name=_run_on_acc_82, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_82, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_204 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_204 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_205 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_205 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_206 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_206 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_207 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_207 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.036506
- TRT INetwork construction elapsed time: 0:00:00.036506
- Build TRT engine elapsed time: 0:00:00.433769
- Build TRT engine elapsed time: 0:00:00.433769
- Lowering submodule _run_on_acc_82 elapsed time 0:00:00.504658
- Lowering submodule _run_on_acc_82 elapsed time 0:00:00.504658
- Now lowering submodule _run_on_acc_84
- Now lowering submodule _run_on_acc_84
- split_name=_run_on_acc_84, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_84, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_208 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_208 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_209 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_209 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022474
- TRT INetwork construction elapsed time: 0:00:00.022474
- 2023-03-27 05:23:21.530
- Build TRT engine elapsed time: 0:00:04.274198
- Build TRT engine elapsed time: 0:00:04.274198
- Lowering submodule _run_on_acc_84 elapsed time 0:00:04.336163
- Lowering submodule _run_on_acc_84 elapsed time 0:00:04.336163
- Now lowering submodule _run_on_acc_86
- Now lowering submodule _run_on_acc_86
- split_name=_run_on_acc_86, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_86, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:23:21.577
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:23:21.597
- TRT INetwork construction elapsed time: 0:00:00.020005
- TRT INetwork construction elapsed time: 0:00:00.020005
- 2023-03-27 05:23:31.919
- Build TRT engine elapsed time: 0:00:10.314745
- Build TRT engine elapsed time: 0:00:10.314745
- Lowering submodule _run_on_acc_86 elapsed time 0:00:10.369284
- Lowering submodule _run_on_acc_86 elapsed time 0:00:10.369284
- Now lowering submodule _run_on_acc_88
- Now lowering submodule _run_on_acc_88
- split_name=_run_on_acc_88, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_88, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_210 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_210 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_211 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_211 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_212 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_212 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_213 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_213 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.038002
- TRT INetwork construction elapsed time: 0:00:00.038002
- Build TRT engine elapsed time: 0:00:00.421442
- Build TRT engine elapsed time: 0:00:00.421442
- Lowering submodule _run_on_acc_88 elapsed time 0:00:00.493725
- Lowering submodule _run_on_acc_88 elapsed time 0:00:00.493725
- Now lowering submodule _run_on_acc_90
- Now lowering submodule _run_on_acc_90
- split_name=_run_on_acc_90, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_90, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_214 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_214 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_215 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_215 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022619
- TRT INetwork construction elapsed time: 0:00:00.022619
- 2023-03-27 05:23:36.797
- Build TRT engine elapsed time: 0:00:04.292359
- Build TRT engine elapsed time: 0:00:04.292359
- Lowering submodule _run_on_acc_90 elapsed time 0:00:04.353155
- Lowering submodule _run_on_acc_90 elapsed time 0:00:04.353155
- Now lowering submodule _run_on_acc_92
- Now lowering submodule _run_on_acc_92
- split_name=_run_on_acc_92, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_92, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:23:36.843
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:23:36.855
- TRT INetwork construction elapsed time: 0:00:00.012449
- TRT INetwork construction elapsed time: 0:00:00.012449
- 2023-03-27 05:23:47.226
- Build TRT engine elapsed time: 0:00:10.362828
- Build TRT engine elapsed time: 0:00:10.362828
- Lowering submodule _run_on_acc_92 elapsed time 0:00:10.409648
- Lowering submodule _run_on_acc_92 elapsed time 0:00:10.409648
- Now lowering submodule _run_on_acc_94
- Now lowering submodule _run_on_acc_94
- split_name=_run_on_acc_94, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_94, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:23:47.270
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:23:47.280
- TRT INetwork construction elapsed time: 0:00:00.012002
- TRT INetwork construction elapsed time: 0:00:00.012002
- 2023-03-27 05:23:51.052
- Build TRT engine elapsed time: 0:00:03.763718
- Build TRT engine elapsed time: 0:00:03.763718
- Lowering submodule _run_on_acc_94 elapsed time 0:00:03.808704
- Lowering submodule _run_on_acc_94 elapsed time 0:00:03.808704
- Now lowering submodule _run_on_acc_96
- Now lowering submodule _run_on_acc_96
- split_name=_run_on_acc_96, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_96, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_216 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_216 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_217 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_217 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_218 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_218 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_219 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_219 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037003
- TRT INetwork construction elapsed time: 0:00:00.037003
- Build TRT engine elapsed time: 0:00:00.428686
- Build TRT engine elapsed time: 0:00:00.428686
- Lowering submodule _run_on_acc_96 elapsed time 0:00:00.500206
- Lowering submodule _run_on_acc_96 elapsed time 0:00:00.500206
- Now lowering submodule _run_on_acc_98
- Now lowering submodule _run_on_acc_98
- split_name=_run_on_acc_98, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_98, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_220 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_220 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_221 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_221 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021504
- TRT INetwork construction elapsed time: 0:00:00.021504
- 2023-03-27 05:23:55.944
- Build TRT engine elapsed time: 0:00:04.304132
- Build TRT engine elapsed time: 0:00:04.304132
- Lowering submodule _run_on_acc_98 elapsed time 0:00:04.363832
- Lowering submodule _run_on_acc_98 elapsed time 0:00:04.363832
- Now lowering submodule _run_on_acc_100
- Now lowering submodule _run_on_acc_100
- split_name=_run_on_acc_100, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_100, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:23:55.990
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:23:56.010
- TRT INetwork construction elapsed time: 0:00:00.019997
- TRT INetwork construction elapsed time: 0:00:00.019997
- 2023-03-27 05:24:06.075
- Build TRT engine elapsed time: 0:00:10.056246
- Build TRT engine elapsed time: 0:00:10.056246
- Lowering submodule _run_on_acc_100 elapsed time 0:00:10.110658
- Lowering submodule _run_on_acc_100 elapsed time 0:00:10.110658
- Now lowering submodule _run_on_acc_102
- Now lowering submodule _run_on_acc_102
- split_name=_run_on_acc_102, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_102, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_222 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_222 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_223 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_223 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_224 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_224 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_225 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_225 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.036510
- TRT INetwork construction elapsed time: 0:00:00.036510
- Build TRT engine elapsed time: 0:00:00.433247
- Build TRT engine elapsed time: 0:00:00.433247
- Lowering submodule _run_on_acc_102 elapsed time 0:00:00.505180
- Lowering submodule _run_on_acc_102 elapsed time 0:00:00.505180
- Now lowering submodule _run_on_acc_104
- Now lowering submodule _run_on_acc_104
- split_name=_run_on_acc_104, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_104, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_226 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_226 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_227 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_227 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022015
- TRT INetwork construction elapsed time: 0:00:00.022015
- 2023-03-27 05:24:10.928
- Build TRT engine elapsed time: 0:00:04.258981
- Build TRT engine elapsed time: 0:00:04.258981
- Lowering submodule _run_on_acc_104 elapsed time 0:00:04.319536
- Lowering submodule _run_on_acc_104 elapsed time 0:00:04.319536
- Now lowering submodule _run_on_acc_106
- Now lowering submodule _run_on_acc_106
- split_name=_run_on_acc_106, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_106, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:24:10.974
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:24:10.994
- TRT INetwork construction elapsed time: 0:00:00.020005
- TRT INetwork construction elapsed time: 0:00:00.020005
- 2023-03-27 05:24:21.030
- Build TRT engine elapsed time: 0:00:10.027874
- Build TRT engine elapsed time: 0:00:10.027874
- Lowering submodule _run_on_acc_106 elapsed time 0:00:10.082504
- Lowering submodule _run_on_acc_106 elapsed time 0:00:10.082504
- Now lowering submodule _run_on_acc_108
- Now lowering submodule _run_on_acc_108
- split_name=_run_on_acc_108, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_108, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_228 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_228 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_229 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_229 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_230 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_230 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_231 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_231 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037008
- TRT INetwork construction elapsed time: 0:00:00.037008
- Build TRT engine elapsed time: 0:00:00.423912
- Build TRT engine elapsed time: 0:00:00.423912
- Lowering submodule _run_on_acc_108 elapsed time 0:00:00.495086
- Lowering submodule _run_on_acc_108 elapsed time 0:00:00.495086
- Now lowering submodule _run_on_acc_110
- Now lowering submodule _run_on_acc_110
- split_name=_run_on_acc_110, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_110, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_232 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_232 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_233 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_233 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021300
- TRT INetwork construction elapsed time: 0:00:00.021300
- 2023-03-27 05:24:25.911
- Build TRT engine elapsed time: 0:00:04.294626
- Build TRT engine elapsed time: 0:00:04.294626
- Lowering submodule _run_on_acc_110 elapsed time 0:00:04.355888
- Lowering submodule _run_on_acc_110 elapsed time 0:00:04.355888
- Now lowering submodule _run_on_acc_112
- Now lowering submodule _run_on_acc_112
- split_name=_run_on_acc_112, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_112, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:24:25.958
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:24:25.978
- TRT INetwork construction elapsed time: 0:00:00.021005
- TRT INetwork construction elapsed time: 0:00:00.021005
- 2023-03-27 05:24:36.012
- Build TRT engine elapsed time: 0:00:10.025766
- Build TRT engine elapsed time: 0:00:10.025766
- Lowering submodule _run_on_acc_112 elapsed time 0:00:10.080759
- Lowering submodule _run_on_acc_112 elapsed time 0:00:10.080759
- Now lowering submodule _run_on_acc_114
- Now lowering submodule _run_on_acc_114
- split_name=_run_on_acc_114, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_114, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_234 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_234 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_235 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_235 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_236 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_236 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_237 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_237 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037007
- TRT INetwork construction elapsed time: 0:00:00.037007
- Build TRT engine elapsed time: 0:00:00.416450
- Build TRT engine elapsed time: 0:00:00.416450
- Lowering submodule _run_on_acc_114 elapsed time 0:00:00.487694
- Lowering submodule _run_on_acc_114 elapsed time 0:00:00.487694
- Now lowering submodule _run_on_acc_116
- Now lowering submodule _run_on_acc_116
- split_name=_run_on_acc_116, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_116, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_238 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_238 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_239 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_239 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022006
- TRT INetwork construction elapsed time: 0:00:00.022006
- 2023-03-27 05:24:40.836
- Build TRT engine elapsed time: 0:00:04.247610
- Build TRT engine elapsed time: 0:00:04.247610
- Lowering submodule _run_on_acc_116 elapsed time 0:00:04.308578
- Lowering submodule _run_on_acc_116 elapsed time 0:00:04.308578
- Now lowering submodule _run_on_acc_118
- Now lowering submodule _run_on_acc_118
- split_name=_run_on_acc_118, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_118, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:24:40.884
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:24:40.904
- TRT INetwork construction elapsed time: 0:00:00.020048
- TRT INetwork construction elapsed time: 0:00:00.020048
- 2023-03-27 05:24:50.877
- Build TRT engine elapsed time: 0:00:09.964763
- Build TRT engine elapsed time: 0:00:09.964763
- Lowering submodule _run_on_acc_118 elapsed time 0:00:10.021839
- Lowering submodule _run_on_acc_118 elapsed time 0:00:10.021839
- Now lowering submodule _run_on_acc_120
- Now lowering submodule _run_on_acc_120
- split_name=_run_on_acc_120, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_120, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_240 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_240 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_241 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_241 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_242 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_242 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_243 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_243 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037499
- TRT INetwork construction elapsed time: 0:00:00.037499
- Build TRT engine elapsed time: 0:00:00.431422
- Build TRT engine elapsed time: 0:00:00.431422
- Lowering submodule _run_on_acc_120 elapsed time 0:00:00.503167
- Lowering submodule _run_on_acc_120 elapsed time 0:00:00.503167
- Now lowering submodule _run_on_acc_122
- Now lowering submodule _run_on_acc_122
- split_name=_run_on_acc_122, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_122, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_244 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_244 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_245 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_245 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022005
- TRT INetwork construction elapsed time: 0:00:00.022005
- 2023-03-27 05:24:55.738
- Build TRT engine elapsed time: 0:00:04.267363
- Build TRT engine elapsed time: 0:00:04.267363
- Lowering submodule _run_on_acc_122 elapsed time 0:00:04.327424
- Lowering submodule _run_on_acc_122 elapsed time 0:00:04.327424
- Now lowering submodule _run_on_acc_124
- Now lowering submodule _run_on_acc_124
- split_name=_run_on_acc_124, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_124, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:24:55.784
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:24:55.804
- TRT INetwork construction elapsed time: 0:00:00.020000
- TRT INetwork construction elapsed time: 0:00:00.020000
- 2023-03-27 05:25:05.842
- Build TRT engine elapsed time: 0:00:10.029499
- Build TRT engine elapsed time: 0:00:10.029499
- Lowering submodule _run_on_acc_124 elapsed time 0:00:10.084028
- Lowering submodule _run_on_acc_124 elapsed time 0:00:10.084028
- Now lowering submodule _run_on_acc_126
- Now lowering submodule _run_on_acc_126
- split_name=_run_on_acc_126, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_126, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_246 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_246 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_247 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_247 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_248 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_248 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_249 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_249 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037984
- TRT INetwork construction elapsed time: 0:00:00.037984
- Build TRT engine elapsed time: 0:00:00.428732
- Build TRT engine elapsed time: 0:00:00.428732
- Lowering submodule _run_on_acc_126 elapsed time 0:00:00.502204
- Lowering submodule _run_on_acc_126 elapsed time 0:00:00.502204
- Now lowering submodule _run_on_acc_128
- Now lowering submodule _run_on_acc_128
- split_name=_run_on_acc_128, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_128, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_250 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_250 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_251 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_251 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022002
- TRT INetwork construction elapsed time: 0:00:00.022002
- 2023-03-27 05:25:10.696
- Build TRT engine elapsed time: 0:00:04.261908
- Build TRT engine elapsed time: 0:00:04.261908
- Lowering submodule _run_on_acc_128 elapsed time 0:00:04.321579
- Lowering submodule _run_on_acc_128 elapsed time 0:00:04.321579
- Now lowering submodule _run_on_acc_130
- Now lowering submodule _run_on_acc_130
- split_name=_run_on_acc_130, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_130, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:25:10.742
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:25:10.753
- TRT INetwork construction elapsed time: 0:00:00.012003
- TRT INetwork construction elapsed time: 0:00:00.012003
- 2023-03-27 05:25:20.927
- Build TRT engine elapsed time: 0:00:10.165734
- Build TRT engine elapsed time: 0:00:10.165734
- Lowering submodule _run_on_acc_130 elapsed time 0:00:10.211746
- Lowering submodule _run_on_acc_130 elapsed time 0:00:10.211746
- Now lowering submodule _run_on_acc_132
- Now lowering submodule _run_on_acc_132
- split_name=_run_on_acc_132, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_132, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:25:20.972
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:25:20.984
- TRT INetwork construction elapsed time: 0:00:00.013004
- TRT INetwork construction elapsed time: 0:00:00.013004
- 2023-03-27 05:25:24.712
- Build TRT engine elapsed time: 0:00:03.719135
- Build TRT engine elapsed time: 0:00:03.719135
- Lowering submodule _run_on_acc_132 elapsed time 0:00:03.767137
- Lowering submodule _run_on_acc_132 elapsed time 0:00:03.767137
- Now lowering submodule _run_on_acc_134
- Now lowering submodule _run_on_acc_134
- split_name=_run_on_acc_134, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_134, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_252 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_252 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_253 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_253 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_254 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_254 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_255 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_255 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.038008
- TRT INetwork construction elapsed time: 0:00:00.038008
- Build TRT engine elapsed time: 0:00:00.443596
- Build TRT engine elapsed time: 0:00:00.443596
- Lowering submodule _run_on_acc_134 elapsed time 0:00:00.517405
- Lowering submodule _run_on_acc_134 elapsed time 0:00:00.517405
- Now lowering submodule _run_on_acc_136
- Now lowering submodule _run_on_acc_136
- split_name=_run_on_acc_136, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_136, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_256 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_256 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_257 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_257 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022005
- TRT INetwork construction elapsed time: 0:00:00.022005
- 2023-03-27 05:25:29.560
- Build TRT engine elapsed time: 0:00:04.241779
- Build TRT engine elapsed time: 0:00:04.241779
- Lowering submodule _run_on_acc_136 elapsed time 0:00:04.302936
- Lowering submodule _run_on_acc_136 elapsed time 0:00:04.302936
- Now lowering submodule _run_on_acc_138
- Now lowering submodule _run_on_acc_138
- split_name=_run_on_acc_138, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_138, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:25:29.607
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:25:29.627
- TRT INetwork construction elapsed time: 0:00:00.021001
- TRT INetwork construction elapsed time: 0:00:00.021001
- 2023-03-27 05:25:39.760
- Build TRT engine elapsed time: 0:00:10.125096
- Build TRT engine elapsed time: 0:00:10.125096
- Lowering submodule _run_on_acc_138 elapsed time 0:00:10.180046
- Lowering submodule _run_on_acc_138 elapsed time 0:00:10.180046
- Now lowering submodule _run_on_acc_140
- Now lowering submodule _run_on_acc_140
- split_name=_run_on_acc_140, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_140, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_258 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_258 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_259 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_259 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_260 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_260 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_261 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_261 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.036506
- TRT INetwork construction elapsed time: 0:00:00.036506
- Build TRT engine elapsed time: 0:00:00.428635
- Build TRT engine elapsed time: 0:00:00.428635
- Lowering submodule _run_on_acc_140 elapsed time 0:00:00.501459
- Lowering submodule _run_on_acc_140 elapsed time 0:00:00.501459
- Now lowering submodule _run_on_acc_142
- Now lowering submodule _run_on_acc_142
- split_name=_run_on_acc_142, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_142, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_262 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_262 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_263 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_263 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022298
- TRT INetwork construction elapsed time: 0:00:00.022298
- 2023-03-27 05:25:44.719
- Build TRT engine elapsed time: 0:00:04.366112
- Build TRT engine elapsed time: 0:00:04.366112
- Lowering submodule _run_on_acc_142 elapsed time 0:00:04.427833
- Lowering submodule _run_on_acc_142 elapsed time 0:00:04.427833
- Now lowering submodule _run_on_acc_144
- Now lowering submodule _run_on_acc_144
- split_name=_run_on_acc_144, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_144, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:25:44.767
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:25:44.787
- TRT INetwork construction elapsed time: 0:00:00.020982
- TRT INetwork construction elapsed time: 0:00:00.020982
- 2023-03-27 05:25:54.843
- Build TRT engine elapsed time: 0:00:10.047955
- Build TRT engine elapsed time: 0:00:10.047955
- Lowering submodule _run_on_acc_144 elapsed time 0:00:10.106318
- Lowering submodule _run_on_acc_144 elapsed time 0:00:10.106318
- Now lowering submodule _run_on_acc_146
- Now lowering submodule _run_on_acc_146
- split_name=_run_on_acc_146, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_146, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_264 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_264 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_265 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_265 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_266 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_266 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_267 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_267 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037005
- TRT INetwork construction elapsed time: 0:00:00.037005
- Build TRT engine elapsed time: 0:00:00.431744
- Build TRT engine elapsed time: 0:00:00.431744
- Lowering submodule _run_on_acc_146 elapsed time 0:00:00.503690
- Lowering submodule _run_on_acc_146 elapsed time 0:00:00.503690
- Now lowering submodule _run_on_acc_148
- Now lowering submodule _run_on_acc_148
- split_name=_run_on_acc_148, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_148, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_268 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_268 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_269 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_269 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.022503
- TRT INetwork construction elapsed time: 0:00:00.022503
- 2023-03-27 05:25:59.737
- Build TRT engine elapsed time: 0:00:04.296204
- Build TRT engine elapsed time: 0:00:04.296204
- Lowering submodule _run_on_acc_148 elapsed time 0:00:04.356075
- Lowering submodule _run_on_acc_148 elapsed time 0:00:04.356075
- Now lowering submodule _run_on_acc_150
- Now lowering submodule _run_on_acc_150
- split_name=_run_on_acc_150, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_150, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:25:59.783
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:25:59.803
- TRT INetwork construction elapsed time: 0:00:00.021011
- TRT INetwork construction elapsed time: 0:00:00.021011
- 2023-03-27 05:26:09.847
- Build TRT engine elapsed time: 0:00:10.035541
- Build TRT engine elapsed time: 0:00:10.035541
- Lowering submodule _run_on_acc_150 elapsed time 0:00:10.092231
- Lowering submodule _run_on_acc_150 elapsed time 0:00:10.092231
- Now lowering submodule _run_on_acc_152
- Now lowering submodule _run_on_acc_152
- split_name=_run_on_acc_152, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_152, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_270 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_270 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_271 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_271 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_272 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_272 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_273 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_273 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.038792
- TRT INetwork construction elapsed time: 0:00:00.038792
- Build TRT engine elapsed time: 0:00:00.436945
- Build TRT engine elapsed time: 0:00:00.436945
- Lowering submodule _run_on_acc_152 elapsed time 0:00:00.511085
- Lowering submodule _run_on_acc_152 elapsed time 0:00:00.511085
- Now lowering submodule _run_on_acc_154
- Now lowering submodule _run_on_acc_154
- split_name=_run_on_acc_154, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_154, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_274 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_274 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_275 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_275 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.023795
- TRT INetwork construction elapsed time: 0:00:00.023795
- 2023-03-27 05:26:14.778
- Build TRT engine elapsed time: 0:00:04.324144
- Build TRT engine elapsed time: 0:00:04.324144
- Lowering submodule _run_on_acc_154 elapsed time 0:00:04.387566
- Lowering submodule _run_on_acc_154 elapsed time 0:00:04.387566
- Now lowering submodule _run_on_acc_156
- Now lowering submodule _run_on_acc_156
- split_name=_run_on_acc_156, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_156, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:26:14.825
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:26:14.845
- TRT INetwork construction elapsed time: 0:00:00.020507
- TRT INetwork construction elapsed time: 0:00:00.020507
- 2023-03-27 05:26:24.844
- Build TRT engine elapsed time: 0:00:09.991012
- Build TRT engine elapsed time: 0:00:09.991012
- Lowering submodule _run_on_acc_156 elapsed time 0:00:10.049578
- Lowering submodule _run_on_acc_156 elapsed time 0:00:10.049578
- Now lowering submodule _run_on_acc_158
- Now lowering submodule _run_on_acc_158
- split_name=_run_on_acc_158, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_158, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_276 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_276 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_277 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_277 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_278 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_278 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_279 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_279 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.037005
- TRT INetwork construction elapsed time: 0:00:00.037005
- Build TRT engine elapsed time: 0:00:00.423171
- Build TRT engine elapsed time: 0:00:00.423171
- Lowering submodule _run_on_acc_158 elapsed time 0:00:00.495677
- Lowering submodule _run_on_acc_158 elapsed time 0:00:00.495677
- Now lowering submodule _run_on_acc_160
- Now lowering submodule _run_on_acc_160
- split_name=_run_on_acc_160, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_160, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_280 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_280 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_281 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_281 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.021485
- TRT INetwork construction elapsed time: 0:00:00.021485
- 2023-03-27 05:26:29.713
- Build TRT engine elapsed time: 0:00:04.278824
- Build TRT engine elapsed time: 0:00:04.278824
- Lowering submodule _run_on_acc_160 elapsed time 0:00:04.340067
- Lowering submodule _run_on_acc_160 elapsed time 0:00:04.340067
- Now lowering submodule _run_on_acc_162
- Now lowering submodule _run_on_acc_162
- split_name=_run_on_acc_162, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_162, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:26:29.760
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:26:29.780
- TRT INetwork construction elapsed time: 0:00:00.020991
- TRT INetwork construction elapsed time: 0:00:00.020991
- 2023-03-27 05:26:39.806
- Build TRT engine elapsed time: 0:00:10.018291
- Build TRT engine elapsed time: 0:00:10.018291
- Lowering submodule _run_on_acc_162 elapsed time 0:00:10.073605
- Lowering submodule _run_on_acc_162 elapsed time 0:00:10.073605
- Now lowering submodule _run_on_acc_164
- Now lowering submodule _run_on_acc_164
- split_name=_run_on_acc_164, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_164, input_specs=[InputTensorSpec(shape=torch.Size([1, 48, 80, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 48, 80, 1]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_282 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_282 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_283 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_283 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_284 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_284 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_285 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_285 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.038008
- TRT INetwork construction elapsed time: 0:00:00.038008
- Build TRT engine elapsed time: 0:00:00.424398
- Build TRT engine elapsed time: 0:00:00.424398
- Lowering submodule _run_on_acc_164 elapsed time 0:00:00.496390
- Lowering submodule _run_on_acc_164 elapsed time 0:00:00.496390
- Now lowering submodule _run_on_acc_166
- Now lowering submodule _run_on_acc_166
- split_name=_run_on_acc_166, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_166, input_specs=[InputTensorSpec(shape=torch.Size([60, 64, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([60, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 60, 1, 64, 64]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_286 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_286 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_287 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\converters\converter_utils.py:457: UserWarning: Both operands of the binary elementwise op floordiv_287 are constant. In this case, please consider constant fold the model first.
- warnings.warn(
- TRT INetwork construction elapsed time: 0:00:00.023005
- TRT INetwork construction elapsed time: 0:00:00.023005
- 2023-03-27 05:26:44.701
- Build TRT engine elapsed time: 0:00:04.307120
- Build TRT engine elapsed time: 0:00:04.307120
- Lowering submodule _run_on_acc_166 elapsed time 0:00:04.368131
- Lowering submodule _run_on_acc_166 elapsed time 0:00:04.368131
- Now lowering submodule _run_on_acc_168
- Now lowering submodule _run_on_acc_168
- split_name=_run_on_acc_168, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_168, input_specs=[InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- 2023-03-27 05:26:44.749
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- Unable to find layer norm plugin, fall back to TensorRT implementation.
- 2023-03-27 05:26:44.760
- TRT INetwork construction elapsed time: 0:00:00.012003
- TRT INetwork construction elapsed time: 0:00:00.012003
- 2023-03-27 05:26:54.941
- Build TRT engine elapsed time: 0:00:10.173015
- Build TRT engine elapsed time: 0:00:10.173015
- Lowering submodule _run_on_acc_168 elapsed time 0:00:10.220081
- Lowering submodule _run_on_acc_168 elapsed time 0:00:10.220081
- Now lowering submodule _run_on_acc_170
- Now lowering submodule _run_on_acc_170
- split_name=_run_on_acc_170, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_170, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 3840, 256]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.000999
- TRT INetwork construction elapsed time: 0:00:00.000999
- 2023-03-27 05:26:57.108
- Build TRT engine elapsed time: 0:00:02.113329
- Build TRT engine elapsed time: 0:00:02.113329
- Lowering submodule _run_on_acc_170 elapsed time 0:00:02.149360
- Lowering submodule _run_on_acc_170 elapsed time 0:00:02.149360
- Now lowering submodule _run_on_acc_172
- Now lowering submodule _run_on_acc_172
- split_name=_run_on_acc_172, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_172, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.002000
- TRT INetwork construction elapsed time: 0:00:00.002000
- Build TRT engine elapsed time: 0:00:01.918650
- Build TRT engine elapsed time: 0:00:01.918650
- Lowering submodule _run_on_acc_172 elapsed time 0:00:01.954914
- Lowering submodule _run_on_acc_172 elapsed time 0:00:01.954914
- Now lowering submodule _run_on_acc_174
- Now lowering submodule _run_on_acc_174
- split_name=_run_on_acc_174, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 512, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_174, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 512, 48, 80]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.003001
- TRT INetwork construction elapsed time: 0:00:00.003001
- 2023-03-27 05:27:01.856
- Build TRT engine elapsed time: 0:00:02.722756
- Build TRT engine elapsed time: 0:00:02.722756
- Lowering submodule _run_on_acc_174 elapsed time 0:00:02.760268
- Lowering submodule _run_on_acc_174 elapsed time 0:00:02.760268
- Now lowering submodule _run_on_acc_176
- Now lowering submodule _run_on_acc_176
- split_name=_run_on_acc_176, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_176, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.004177
- TRT INetwork construction elapsed time: 0:00:00.004177
- 2023-03-27 05:27:04.652
- Build TRT engine elapsed time: 0:00:02.740045
- Build TRT engine elapsed time: 0:00:02.740045
- Lowering submodule _run_on_acc_176 elapsed time 0:00:02.779477
- Lowering submodule _run_on_acc_176 elapsed time 0:00:02.779477
- Now lowering submodule _run_on_acc_178
- Now lowering submodule _run_on_acc_178
- split_name=_run_on_acc_178, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_178, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.003001
- TRT INetwork construction elapsed time: 0:00:00.003001
- 2023-03-27 05:27:07.478
- Build TRT engine elapsed time: 0:00:02.772769
- Build TRT engine elapsed time: 0:00:02.772769
- Lowering submodule _run_on_acc_178 elapsed time 0:00:02.809798
- Lowering submodule _run_on_acc_178 elapsed time 0:00:02.809798
- Now lowering submodule _run_on_acc_180
- Now lowering submodule _run_on_acc_180
- split_name=_run_on_acc_180, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_180, input_specs=[InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.003998
- TRT INetwork construction elapsed time: 0:00:00.003998
- 2023-03-27 05:27:12.314
- Build TRT engine elapsed time: 0:00:04.781494
- Build TRT engine elapsed time: 0:00:04.781494
- Lowering submodule _run_on_acc_180 elapsed time 0:00:04.821787
- Lowering submodule _run_on_acc_180 elapsed time 0:00:04.821787
- Now lowering submodule _run_on_acc_182
- Now lowering submodule _run_on_acc_182
- split_name=_run_on_acc_182, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_182, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 256, 96, 160]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.004128
- TRT INetwork construction elapsed time: 0:00:00.004128
- 2023-03-27 05:27:40.716
- Build TRT engine elapsed time: 0:00:28.343696
- Build TRT engine elapsed time: 0:00:28.343696
- Lowering submodule _run_on_acc_182 elapsed time 0:00:28.385848
- Lowering submodule _run_on_acc_182 elapsed time 0:00:28.385848
- Now lowering submodule _run_on_acc_184
- Now lowering submodule _run_on_acc_184
- split_name=_run_on_acc_184, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_184, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.004128
- TRT INetwork construction elapsed time: 0:00:00.004128
- 2023-03-27 05:27:43.880
- Build TRT engine elapsed time: 0:00:03.104550
- Build TRT engine elapsed time: 0:00:03.104550
- Lowering submodule _run_on_acc_184 elapsed time 0:00:03.146690
- Lowering submodule _run_on_acc_184 elapsed time 0:00:03.146690
- Now lowering submodule _run_on_acc_186
- Now lowering submodule _run_on_acc_186
- split_name=_run_on_acc_186, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_186, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.002000
- TRT INetwork construction elapsed time: 0:00:00.002000
- 2023-03-27 05:27:46.898
- Build TRT engine elapsed time: 0:00:02.965473
- Build TRT engine elapsed time: 0:00:02.965473
- Lowering submodule _run_on_acc_186 elapsed time 0:00:03.002562
- Lowering submodule _run_on_acc_186 elapsed time 0:00:03.002562
- Now lowering submodule _run_on_acc_188
- Now lowering submodule _run_on_acc_188
- split_name=_run_on_acc_188, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_188, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.001505
- TRT INetwork construction elapsed time: 0:00:00.001505
- 2023-03-27 05:27:49.880
- Build TRT engine elapsed time: 0:00:02.930511
- Build TRT engine elapsed time: 0:00:02.930511
- Lowering submodule _run_on_acc_188 elapsed time 0:00:02.967487
- Lowering submodule _run_on_acc_188 elapsed time 0:00:02.967487
- Now lowering submodule _run_on_acc_190
- Now lowering submodule _run_on_acc_190
- split_name=_run_on_acc_190, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_190, input_specs=[InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 128, 192, 320]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.002011
- TRT INetwork construction elapsed time: 0:00:00.002011
- 2023-03-27 05:27:54.905
- Build TRT engine elapsed time: 0:00:04.971792
- Build TRT engine elapsed time: 0:00:04.971792
- Lowering submodule _run_on_acc_190 elapsed time 0:00:05.010673
- Lowering submodule _run_on_acc_190 elapsed time 0:00:05.010673
- Now lowering submodule _run_on_acc_192
- Now lowering submodule _run_on_acc_192
- split_name=_run_on_acc_192, input_specs=[InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_192, input_specs=[InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.000998
- TRT INetwork construction elapsed time: 0:00:00.000998
- 2023-03-27 05:27:57.915
- Build TRT engine elapsed time: 0:00:02.957856
- Build TRT engine elapsed time: 0:00:02.957856
- Lowering submodule _run_on_acc_192 elapsed time 0:00:02.992994
- Lowering submodule _run_on_acc_192 elapsed time 0:00:02.992994
- Now lowering submodule _run_on_acc_194
- Now lowering submodule _run_on_acc_194
- split_name=_run_on_acc_194, input_specs=[InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_194, input_specs=[InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True), InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.000999
- TRT INetwork construction elapsed time: 0:00:00.000999
- 2023-03-27 05:28:00.995
- Build TRT engine elapsed time: 0:00:03.027250
- Build TRT engine elapsed time: 0:00:03.027250
- Lowering submodule _run_on_acc_194 elapsed time 0:00:03.063577
- Lowering submodule _run_on_acc_194 elapsed time 0:00:03.063577
- Now lowering submodule _run_on_acc_196
- Now lowering submodule _run_on_acc_196
- split_name=_run_on_acc_196, input_specs=[InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- split_name=_run_on_acc_196, input_specs=[InputTensorSpec(shape=torch.Size([1, 64, 384, 640]), dtype=torch.float16, device=device(type='cuda', index=0), shape_ranges=[], has_batch_dim=True)]
- Timing cache is used!
- Timing cache is used!
- TRT INetwork construction elapsed time: 0:00:00.001001
- TRT INetwork construction elapsed time: 0:00:00.001001
- 2023-03-27 05:28:01.054
- Failed to evaluate the script:
- Python exception:
- Traceback (most recent call last):
- File "src\cython\vapoursynth.pyx", line 2866, in vapoursynth._vpy_evaluate
- File "src\cython\vapoursynth.pyx", line 2867, in vapoursynth._vpy_evaluate
- File "J:\tmp\tempPreviewVapoursynthFile05_19_33_068.vpy", line 38, in
- clip = FeMaSR(clip=clip, device_index=0, trt=True, trt_cache_path=r"J:\tmp") # 640x352
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context
- return func(*args, **kwargs)
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\vsfemasr\__init__.py", line 171, in femasr
- module = lowerer(
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\lower.py", line 323, in __call__
- return do_lower(module, inputs)
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\passes\pass_utils.py", line 117, in pass_with_validation
- processed_module = pass_(module, input, *args, **kwargs)
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\lower.py", line 320, in do_lower
- lower_result = pm(module)
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\fx\passes\pass_manager.py", line 240, in __call__
- out = _pass(out)
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch\fx\passes\pass_manager.py", line 240, in __call__
- out = _pass(out)
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\passes\lower_pass_manager_builder.py", line 167, in lower_func
- lowered_module = self._lower_func(
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\lower.py", line 180, in lower_pass
- interp_res: TRTInterpreterResult = interpreter(mod, input, module_name)
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\lower.py", line 132, in __call__
- interp_result: TRTInterpreterResult = interpreter.run(
- File "I:\Hybrid\64bit\Vapoursynth\Lib\site-packages\torch_tensorrt\fx\fx2trt.py", line 252, in run
- assert engine
- AssertionError
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement