MatsGranvik

Zeta zero spectrum comb asymptotics

Mar 30th, 2018 (edited)
346
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.95 KB | None | 0 0
  1. (*start*)Clear[n, k, t, A, nn];
  2. nn = 50;
  3. A = Table[
  4. Table[If[Mod[n, k] == 0, 1/(n/k)^(1/2 + I*t - 1), 0], {k, 1,
  5. nn}], {n, 1, nn}];
  6. MatrixForm[A];
  7. g1 = ListLinePlot[
  8. Table[Total[
  9. 1/Table[n, {n, 1, nn}]*
  10. Total[Transpose[Re[Inverse[A]*Zeta[1/2 + I*t]]]]], {t, 1/1000,
  11. 60, N[1/6]}], DataRange -> {0, 60}, PlotRange -> {-0, 10}];
  12. f[t_] = D[RiemannSiegelTheta[t], t];
  13. g2 = Plot[(f[t] + HarmonicNumber[nn]), {t, 0, 60},
  14. PlotRange -> {0, 15}, PlotStyle -> {Red}];
  15. Show[g1, g2]
  16. (*end*)
  17.  
  18. (*start*)
  19. Clear[n, k, t, A, nn];
  20. nn = 50;
  21. A = Table[
  22. Table[If[Mod[n, k] == 0, 1/(n/k)^(1/2 + I*t - 1), 0], {k, 1,
  23. nn}], {n, 1, nn}];
  24. MatrixForm[A];
  25. g1 = ListLinePlot[
  26. Table[Total[
  27. 1/Table[n*t, {n, 1, nn}]*
  28. Total[Transpose[Re[Inverse[A]*Zeta[1/2 + I*t]]]]], {t, 1/1000,
  29. 60, N[1/6]}], DataRange -> {0, 60}, PlotRange -> {-0, 1}];
  30. f[t_] = D[RiemannSiegelTheta[t], t];
  31. g2 = Plot[(f[t] + HarmonicNumber[nn])/t, {t, 0, 60},
  32. PlotRange -> {0, 1}, PlotStyle -> {Red}];
  33. Show[g1, g2]
  34. (*end*)
  35.  
  36. (*start*)f[t_] = D[RiemannSiegelTheta[t], t];
  37. nnn = 60
  38. cc = 10;
  39. g1 = Plot[(f[t] + cc + EulerGamma), {t, 0, nnn},
  40. PlotStyle -> {Thickness[0.004], Red}, PlotRange -> {-2, cc + 5}];
  41. c = 1 + 1/cc;
  42. g2 = Plot[
  43. Re[Zeta[1/2 + I*t]*Zeta[c]/Zeta[1/2 + I*t + c - 1]], {t, 0, nnn},
  44. PlotRange -> {-2, cc + 5}, PlotStyle -> Thickness[0.02]];
  45. Show[g2, g1, ImageSize -> Large]
  46. (*end*)
  47.  
  48.  
  49. (*Better agreement between asymptotics*)
  50.  
  51. (*start*)
  52. Clear[n, k, t, A, nn];
  53. nn = 60;
  54. A = Table[
  55. Table[If[Mod[n, k] == 0, 1/(n/k)^(1/2 + I*t - 1), 0], {k, 1,
  56. nn}], {n, 1, nn}];
  57. MatrixForm[A];
  58. g1 = ListLinePlot[
  59. Table[Total[
  60. 1/Table[n, {n, 1, nn}]*
  61. Total[Transpose[Re[Inverse[A]*Zeta[1/2 + I*t]]]]], {t, 1/1000,
  62. 60, N[1/6]}], DataRange -> {0, 60}, PlotRange -> {-0, 10}];
  63. f[t_] = D[RiemannSiegelTheta[t], t];
  64. g2 = Plot[(f[t] + HarmonicNumber[nn]), {t, 0, 60},
  65. PlotRange -> {0, 15}, PlotStyle -> {Red}];
  66. gg1 = Show[g1, g2]
  67. (*end*)
  68.  
  69. (*start*)
  70. f[t_] = D[RiemannSiegelTheta[t], t];
  71. nnn = nn
  72. cc = Log[nn];
  73. g1 = Plot[(f[t] + cc + EulerGamma), {t, 0, nnn},
  74. PlotStyle -> {Thickness[0.002], Red}, PlotRange -> {-2, cc + 5}];
  75. c = 1 + 1/cc;
  76. g2 = Plot[
  77. Re[Zeta[1/2 + I*t]*Zeta[c]/Zeta[1/2 + I*t + c - 1]], {t, 0, nnn},
  78. PlotRange -> {-2, cc + 5}, PlotStyle -> Thickness[0.002]];
  79. gg2 = Show[g2, g1]
  80. Show[gg1, gg2]
  81. (*end*)
  82.  
  83.  
  84. (* Latex *)
  85.  
  86. In [this answer](https://math.stackexchange.com/a/4199789/8530) the following asymptotic relation was found:
  87.  
  88. $$\Re \frac{{\zeta\! \left( {1 + \frac{1}{c}} \right)\zeta\! \left( {\frac{1}{2} + it} \right)}}{{\zeta\! \left( {\frac{1}{2} + it + \frac{1}{c}} \right)}} = c + \frac{{d\vartheta (t)}}{{dt}} + \gamma + \mathcal{O}\!\left( {\frac{1}{c}} \right)$$
  89.  
  90. $$\Re\left(\sum _{n=1}^N \frac{\zeta \left(\frac{1}{2}+i t\right) \sum \frac{\mu (d(n))}{d(n)^{\frac{1}{2}+i t-1}}}{n}\right)=\Re\left(\frac{\zeta \left(\frac{1}{2}+i t\right) \zeta \left(1+\frac{1}{\log (N)}\right)}{\zeta \left(\frac{1}{2}+i t+\frac{1}{\log (N)}+1-1\right)}\right)$$
  91.  
  92. (*start*)
  93. Clear[n, k, t, A, nn];
  94. nn = 60;
  95. A = Table[
  96. Table[If[Mod[n, k] == 0, 1/(n/k)^(1/2 + I*t - 1), 0], {k, 1,
  97. nn}], {n, 1, nn}];
  98. MatrixForm[A];
  99. g1 = ListLinePlot[
  100. Table[Total[
  101. 1/Table[n, {n, 1, nn}]*
  102. Total[Transpose[Re[Inverse[A]*Zeta[1/2 + I*t]]]]], {t, 1/1000,
  103. 60, N[1/6]}], DataRange -> {0, 60}, PlotRange -> {-0, 10}];
  104. f[t_] = D[RiemannSiegelTheta[t], t];
  105. g2 = Plot[(f[t] + HarmonicNumber[nn]), {t, 0, 60},
  106. PlotRange -> {0, 15}, PlotStyle -> Black];
  107. gg1 = Show[g1, g2]
  108. (*end*)
  109.  
  110. (*start*)
  111. f[t_] = D[RiemannSiegelTheta[t], t];
  112. nnn = nn
  113. cc = Log[nn];
  114. g3 = Plot[(f[t] + cc + EulerGamma), {t, 0, nnn},
  115. PlotStyle -> {Thickness[0.002], Black}, PlotRange -> {-2, cc + 5}];
  116. c = 1 + 1/cc;
  117. g4 = Plot[
  118. Re[Zeta[1/2 + I*t]*Zeta[c]/Zeta[1/2 + I*t + c - 1]], {t, 0, nnn},
  119. PlotRange -> {-2, cc + 5}, PlotStyle -> Red];
  120. gg2 = Show[g4, g3]
  121. Show[gg1, gg2]
  122. Show[g1, g4]
  123. (*end*)
Add Comment
Please, Sign In to add comment