MatsGranvik

Tautological

Jan 5th, 2014
169
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.52 KB | None | 0 0
  1. Do[
  2. Print[Show[
  3. Plot[Re[Zeta[x + I*Im[ZetaZero[n]]]], {x, 1, 0}, PlotStyle -> Red],
  4. Plot[Im[Zeta[x + I*Im[ZetaZero[n]]]], {x, 1, 0}]]], {n, 1, 12}]
  5.  
  6. Clear[n]
  7. Do[Clear[x, a, b, c, d];
  8. b = 10;
  9. (*Andre LeClaire*)
  10. c = N[2*Pi*Exp[1]*(n - 11/8)/Exp[1]/LambertW[(n - 11/8)/Exp[1]], 10];
  11. a = Normal[InverseSeries[Series[(Zeta[1/2 + I*x]), {x, c, b}], x]];
  12. x = 0;
  13. d = N[Re[a]];
  14. Clear[a, x];
  15. a = Normal[InverseSeries[Series[(Zeta[1/2 + I*x]), {x, d, b}], x]];
  16. x = 0;
  17. Print[{N[Re[a]], N[Im[ZetaZero[n]]]}], {n, 1, 20}]
  18.  
  19. (*intressant 5 1 2014*)
  20. Clear[n]
  21. Do[
  22. Clear[x, a, b, c, d];
  23. b = 20;
  24. (*c=N[2*Pi*Exp[1]*(n-11/8)/Exp[1]/LambertW[(n-11/8)/Exp[1]],20];*)
  25. d = N[Im[ZetaZero[n]], 20];
  26. (*d=c;*)
  27. Clear[a, x];
  28. a = Normal[InverseSeries[Series[(2*x*Zeta[x + I*d]), {x, 1, b}], x]];
  29. x = 0;
  30. Print[N[Re[a], 20]], {n, 1, 50}]
  31.  
  32.  
  33. FindRoot[2*x*Zeta[x + I*Im[ZetaZero[1]]], {x, 1}]
  34.  
  35.  
  36. (*intressant 5 1 2014*)
  37. Clear[n]
  38. Do[
  39. Clear[x, a, b, c, d];
  40. b = 20;
  41. (*c=N[2*Pi*Exp[1]*(n-11/8)/Exp[1]/LambertW[(n-11/8)/Exp[1]],20];*)
  42. d = N[Im[ZetaZero[n]], 20];
  43. (*d=c;*)
  44. Clear[a, x];
  45. a = Normal[
  46. InverseSeries[Series[(2*x*Zeta[x + I*d]), {x, 1/2, b}], x]];
  47. x = 0;
  48. Print[N[Re[a], 20]], {n, 1, 50}]
  49.  
  50.  
  51. (*intressant 5 1 2014*)
  52. Clear[n]
  53. Do[
  54. Clear[x, a, b, c, d];
  55. b = 20;
  56. (*c=N[2*Pi*Exp[1]*(n-11/8)/Exp[1]/LambertW[(n-11/8)/Exp[1]],20];*)
  57. d = N[Im[ZetaZero[n]], 20];
  58. (*d=c;*)
  59. Clear[a, x];
  60. a = Normal[InverseSeries[Series[(Zeta[x + I*d]), {x, 0, b}], x]];
  61. x = 0;
  62. Print[N[Re[a], 20]], {n, 1, 50}]
Advertisement
Add Comment
Please, Sign In to add comment