Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Do[
- Print[Show[
- Plot[Re[Zeta[x + I*Im[ZetaZero[n]]]], {x, 1, 0}, PlotStyle -> Red],
- Plot[Im[Zeta[x + I*Im[ZetaZero[n]]]], {x, 1, 0}]]], {n, 1, 12}]
- Clear[n]
- Do[Clear[x, a, b, c, d];
- b = 10;
- (*Andre LeClaire*)
- c = N[2*Pi*Exp[1]*(n - 11/8)/Exp[1]/LambertW[(n - 11/8)/Exp[1]], 10];
- a = Normal[InverseSeries[Series[(Zeta[1/2 + I*x]), {x, c, b}], x]];
- x = 0;
- d = N[Re[a]];
- Clear[a, x];
- a = Normal[InverseSeries[Series[(Zeta[1/2 + I*x]), {x, d, b}], x]];
- x = 0;
- Print[{N[Re[a]], N[Im[ZetaZero[n]]]}], {n, 1, 20}]
- (*intressant 5 1 2014*)
- Clear[n]
- Do[
- Clear[x, a, b, c, d];
- b = 20;
- (*c=N[2*Pi*Exp[1]*(n-11/8)/Exp[1]/LambertW[(n-11/8)/Exp[1]],20];*)
- d = N[Im[ZetaZero[n]], 20];
- (*d=c;*)
- Clear[a, x];
- a = Normal[InverseSeries[Series[(2*x*Zeta[x + I*d]), {x, 1, b}], x]];
- x = 0;
- Print[N[Re[a], 20]], {n, 1, 50}]
- FindRoot[2*x*Zeta[x + I*Im[ZetaZero[1]]], {x, 1}]
- (*intressant 5 1 2014*)
- Clear[n]
- Do[
- Clear[x, a, b, c, d];
- b = 20;
- (*c=N[2*Pi*Exp[1]*(n-11/8)/Exp[1]/LambertW[(n-11/8)/Exp[1]],20];*)
- d = N[Im[ZetaZero[n]], 20];
- (*d=c;*)
- Clear[a, x];
- a = Normal[
- InverseSeries[Series[(2*x*Zeta[x + I*d]), {x, 1/2, b}], x]];
- x = 0;
- Print[N[Re[a], 20]], {n, 1, 50}]
- (*intressant 5 1 2014*)
- Clear[n]
- Do[
- Clear[x, a, b, c, d];
- b = 20;
- (*c=N[2*Pi*Exp[1]*(n-11/8)/Exp[1]/LambertW[(n-11/8)/Exp[1]],20];*)
- d = N[Im[ZetaZero[n]], 20];
- (*d=c;*)
- Clear[a, x];
- a = Normal[InverseSeries[Series[(Zeta[x + I*d]), {x, 0, b}], x]];
- x = 0;
- Print[N[Re[a], 20]], {n, 1, 50}]
Advertisement
Add Comment
Please, Sign In to add comment