Advertisement
Guest User

Untitled

a guest
Nov 18th, 2019
456
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 4.88 KB | None | 0 0
  1. Theorem “`Id` is reflexive”: is-reflexive Id
  2. Proof:
  3. is-reflexive Id
  4. ≡⟨ “Definition of reflexivity” ⟩
  5. ∀ x • x ⦗ Id ⦘ x
  6. ≡⟨ Subproof:
  7. For any `x`:
  8. x ⦗ Id ⦘ x
  9. ≡⟨ “Relationship via `Id`” ⟩
  10. x = x — This is 【 “Reflexivity of =” 】
  11. true
  12.  
  13.  
  14.  
  15.  
  16.  
  17. Theorem “`Id` is reflexive”: is-reflexive Id
  18. Proof:
  19. Using “Definition of reflexivity”:
  20. Subproof for `∀ x • x ⦗ Id ⦘ x`:
  21. For any `x`:
  22. x ⦗ Id ⦘ x
  23. ≡⟨ “Relationship via `Id`” ⟩
  24. x = x — This is “Reflexivity of =”
  25.  
  26.  
  27.  
  28.  
  29.  
  30. Theorem “`Id` is reflexive”: is-reflexive Id
  31. Proof:
  32. Using “Definition of reflexivity”:
  33. Subproof:
  34. For any `x`:
  35. x ⦗ Id ⦘ x
  36. ≡⟨ “Relationship via `Id`” ⟩
  37. x = x — This is “Reflexivity of =”
  38.  
  39.  
  40.  
  41.  
  42.  
  43. Theorem “`Id` is reflexive”: is-reflexive Id
  44. Proof:
  45. Using “Definition of reflexivity”:
  46. For any `x`:
  47. x ⦗ Id ⦘ x
  48. ≡⟨ “Relationship via `Id`” ⟩
  49. x = x — This is “Reflexivity of =”
  50.  
  51.  
  52.  
  53.  
  54.  
  55. Theorem “Reflexivity”: is-reflexive R ≡ Id ⊆ R
  56. Proof:
  57. Id ⊆ R
  58. =⟨ “Relation inclusion” ⟩
  59. ∀ x • (∀ y • (x ⦗ Id ⦘ y ⇒ x ⦗ R ⦘ y))
  60. =⟨ “Relationship via `Id`” ⟩
  61. ∀ x • (∀ y • (x = y ⇒ x ⦗ R ⦘ y))
  62. =⟨ “Trading for ∀” ⟩
  63. ∀ x • (∀ y ❙ x = y • x ⦗ R ⦘ y)
  64. =⟨ “One-point rule for ∀” ⟩
  65. ∀ x • ( (x ⦗ R ⦘ y)[y ≔ x])
  66. =⟨ Substitution ⟩
  67. ∀ x • ( (x ⦗ R ⦘ x))
  68. =⟨ “Definition of reflexivity” ⟩
  69. is-reflexive R
  70.  
  71.  
  72.  
  73.  
  74.  
  75. Theorem “Composition of reflexive relations”:
  76. is-reflexive R ⇒ is-reflexive S ⇒ is-reflexive (R ⨾ S)
  77. Proof:
  78. Assuming `is-reflexive R`:
  79. Assuming `is-reflexive S`:
  80. Using “Definition of reflexivity”:
  81. For any `x`:
  82. x ⦗ R ⨾ S ⦘ x
  83. =⟨ “Relation composition” ⟩
  84. ∃ b • x ⦗ R ⦘ b ∧ b ⦗ S ⦘ x
  85. ⇐⟨ “∃-Introduction” ⟩
  86. (x ⦗ R ⦘ b ∧ b ⦗ S ⦘ x)[b ≔ x]
  87. =⟨ Substitution ⟩
  88. x ⦗ R ⦘ x ∧ x ⦗ S ⦘ x
  89. =⟨ “Definition of reflexivity” with Assumption `is-reflexive R` ⟩
  90. true ∧ x ⦗ S ⦘ x
  91. =⟨ “Definition of reflexivity” with Assumption `is-reflexive S` ⟩
  92. true ∧ true
  93. =⟨ “Idempotency of ∧” ⟩
  94. true
  95.  
  96.  
  97.  
  98.  
  99. Theorem “Composition of reflexive relations”:
  100. is-reflexive R ⇒ is-reflexive S ⇒ is-reflexive (R ⨾ S)
  101. Proof:
  102. Assuming `is-reflexive R` and using with “Definition of reflexivity”:
  103. Assuming `is-reflexive S` and using with “Definition of reflexivity”:
  104. Using “Definition of reflexivity”:
  105. For any `x`:
  106. x ⦗ R ⨾ S ⦘ x
  107. =⟨ “Relation composition” ⟩
  108. ∃ b • x ⦗ R ⦘ b ∧ b ⦗ S ⦘ x
  109. ⇐⟨ “∃-Introduction” ⟩
  110. (x ⦗ R ⦘ b ∧ b ⦗ S ⦘ x)[b ≔ x]
  111. =⟨ Substitution ⟩
  112. x ⦗ R ⦘ x ∧ x ⦗ S ⦘ x
  113. =⟨ Assumption `is-reflexive R` ⟩
  114. true ∧ x ⦗ S ⦘ x
  115. =⟨ Assumption `is-reflexive S` ⟩
  116. true ∧ true
  117. =⟨ “Idempotency of ∧” ⟩
  118. true
  119.  
  120.  
  121.  
  122.  
  123. Theorem “Converse of reflexive relations”:
  124. is-reflexive R ⇒ is-reflexive (R ˘)
  125. Proof:
  126. Assuming `is-reflexive R` and using with “Definition of reflexivity”:
  127. Using “Definition of reflexivity”:
  128. For any `x`:
  129. x ⦗ R ˘ ⦘ x
  130. =⟨ “Relation converse” ⟩
  131. x ⦗ R ⦘ x
  132. =⟨ Assumption `is-reflexive R` ⟩
  133. true
  134.  
  135.  
  136.  
  137.  
  138.  
  139. Theorem “Converse reflects reflectivity”:
  140. is-reflexive (R ˘) ⇒ is-reflexive R
  141. Proof:
  142. Assuming `is-reflexive (R ˘)` and using with “Definition of reflexivity”:
  143. Using “Definition of reflexivity”:
  144. For any `x`:
  145. x ⦗ R ⦘ x
  146. =⟨ “Self-inverse of ˘”, “Relation converse” ⟩
  147. x ⦗ R ˘ ⦘ x
  148. =⟨ Assumption `is-reflexive (R ˘)` ⟩
  149. true
  150.  
  151.  
  152.  
  153.  
  154.  
  155. Theorem “Converse of transitive relations”:
  156. is-transitive R ⇒ is-transitive (R ˘)
  157. Proof:
  158. Assuming `is-transitive R` and using with “Definition of transitivity”:
  159. Using “Definition of transitivity”:
  160. For any `x`, `y`, `z`:
  161. x ⦗ R ˘ ⦘ y ⦗ R ˘ ⦘ z ⇒ x ⦗ R ˘ ⦘ z
  162. =⟨ “Reflexivity of =” ⟩
  163. x ⦗ R ˘ ⦘ y ∧ y ⦗ R ˘ ⦘ z ⇒ x ⦗ R ˘ ⦘ z
  164. =⟨ “Relation converse” ⟩
  165. z ⦗ R ⦘ y ⦗ R ⦘ x ⇒ z ⦗ R ⦘ x
  166. =⟨ Assumption `is-transitive R` ⟩
  167. true
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement