Advertisement
frentzy

fere textu lui fere

Nov 14th, 2018
221
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 16.28 KB | None | 0 0
  1. % version 2013
  2. \documentclass[11pt]{amsart}
  3. %\usepackage{graphicx, color}
  4. \usepackage{amscd}
  5. \usepackage{amsmath,empheq}
  6. \usepackage{amsfonts}
  7. \usepackage{amssymb}
  8. \usepackage{mathrsfs}
  9.  
  10. \usepackage[all]{xy}
  11.  
  12.  
  13. \textwidth=6in \textheight=9.5in \topmargin=-0.5cm
  14. \oddsidemargin=0.5cm \evensidemargin=0.5cm
  15. %\usepackage[notref,notcite]{showkeys}
  16.  
  17. \newtheorem{theorem}{Theorem}
  18. \newtheorem{ex}{Example}
  19. \newtheorem{lemma}[theorem]{Lemma}
  20. \newtheorem{prop}[theorem]{Proposition}
  21. \newtheorem{remark}{Remark}
  22. \newtheorem{corollary}[theorem]{Corollary}
  23. \newtheorem{claim}{Claim}
  24. \newtheorem{step}{Step}
  25. \newtheorem{case}{Case}
  26. \newtheorem{definition}[theorem]{Definition}
  27.  
  28. %\newenvironment{proof}[1][Proof]{\textbf{#1.} }{\ \rule{0.5em}{0.5em}}
  29. \newenvironment{proof-sketch}{\noindent{\bf Sketch of Proof}\hspace*{1em}}{\qed\bigskip}
  30.  
  31. \newcommand{\eqname}[1]{\tag*{#1}}% Name of equation
  32.  
  33. \everymath{\displaystyle}
  34.  
  35. %\numberwithin{equation}{section}
  36. \newcommand{\RR}{\mathbb R}
  37. \newcommand{\NN}{\mathbb N}
  38. \newcommand{\PP}{\mathbb P}
  39. \newcommand{\ZZ}{\mathbb Z}
  40. \renewcommand{\le}{\leqslant}
  41. \renewcommand{\leq}{\leqslant}
  42. \renewcommand{\ge}{\geqslant}
  43. \renewcommand{\geq}{\geqslant}
  44.  
  45. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  46. \baselineskip=16pt plus 1pt minus 1pt
  47.  
  48. \begin{document}
  49. %\hfill\today\bigskip
  50.  
  51. \title[Robin (p-q)-equations with singular and superlinear terms]{Robin (p-q)-equations with singular and superlinear terms}
  52.  
  53.  
  54. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  55. \author[N.S. Papageorgiou]{Nikolaos S. Papageorgiou}
  56. \address{National Technical University, Department of Mathematics,
  57.                 Zografou Campus, Athens 15780, Greece}
  58. \email{\tt npapg@@math.ntua.gr}
  59.  
  60. \author[V. R\u{a}dulescu]{Vicen\c{t}iu D. R\u{a}dulescu}
  61. \address{University of Craiova, Department of Mathematics, Street A.I.Cuza 13,
  62.         200585 Craiova, Romania \\
  63.         and Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764,
  64.          014700 Bucharest, Romania}
  65. \email{\tt vicentiu.radulescu@imar.ro}
  66.  
  67. \author[Dusan Repovs]{Dusan Repovs}
  68. \address{Faculty of Education and Faculty of Mathematics and Physics, University of Ljublijiana, Karadeljeva Ploscad 16, SI-1000 Ljubljana, SLOVENIA}
  69. \email{\tt dusan.repovs@guest.arnes.si}
  70.  
  71. \keywords{Nonhomogeneous differential operator, nonlinear regularity theory, truncations strong comparison, positive solutions\\
  72. \phantom{aa} 2010 AMS Subject Classification: 35J75, 35J92, 35P30}
  73.  
  74.  
  75. \begin{abstract}
  76. We consider a nonlinear Robin problem driven by the sum of a $p$-Laplacian plus a $q$-Laplacian (a (p,q)-ecuation). In the reaction there are the competing effects of a singular term and of a parametric perturbation $\lambda f(z,x)$ which is Caratheodory and variational tools together with truncation and comparison techniques, we prove a bifurcation-type result describing the changes in the set of positive solutions as the parametre $\lambda>0$ varies.
  77. \end{abstract}
  78.  
  79. \maketitle
  80.  
  81. \section{Introduction}
  82.  
  83. Let $\Omega\subseteq\RR^N$ be a bounded domain with a $C^2$-boundary $\partial\Omega$. In this paper, we study the following nonlinear Robin problem
  84. \begin{equation}
  85.     \left\{
  86.         \begin{array}{ll}
  87.             -\Delta_p u(z)-\Delta_q u(z) + \xi(z) u(z)^{p-1} = u(z)^{-\gamma} + \lambda f(z,u(z))\ \mbox{in}\ \Omega,\\
  88.             \frac{\partial u}{\partial n_{pq}} + \beta(z) u^{p-1}=0\ \mbox{on}\ \partial\Omega, u>0, \lambda>0, 0<\gamma<1, 1<q<p.
  89.         \end{array}
  90.     \right\}\tag{$P_{\lambda}$}\label{eqp}
  91. \end{equation}
  92.  
  93. For every $r\in (1,\infty)$ by $\Delta_r$ we denote the $r$-Laplace differential operator defined by
  94. $$
  95. \Delta_r u=div(|Du|^{r-2}Du)\ \mbox{for all}\ u\in W^{1,r}(\Omega).
  96. $$
  97. The differential operator of \eqref{eqp} is the sum of a $p$-Laplacian and of a $q$-Laplacian. Such an operator is not homogeneous and appears in the mathematical models of various physical processes. We mention the works of Cherfils-Ilyasov \cite{1} (reaction-diffusion systems) and Zhikov \cite{18} (elasticity theory). The potential function $\xi\in L^\infty(\Omega)$ and $\xi(z)\geq0$ for almost all $z\in\Omega$. In the reaction (right hand side of \eqref{eqp}), we have the combined effects of two nonlinearities of different nature. One nonlinearity, is the singular term $u^{-\gamma}$ and the other nonlinearity is the parametric term $\lambda f(z,x)$ where $f(z,x)$ is a Caratheodory function (that is, for all $x\in\RR\ z\to f(z,x)$ is measurable and for almost all $z\in\Omega\ x\rightarrow f(z,x)$ is continuous), which exhibits $(p-1)$-superlinear growth near $+\infty$ but without satisfying the usual in such cases Ambrosetti-Rabinowitz condition (the AR-condition for short). In the boundary condition, $\frac{\partial u}{\partial n_{pq}}$ denotes the conormal derivative correspondin to the $(p,q)$-Laplace differential operator. Then according to the nonlinear Green's identity (see Gasinski-Papageorgiou \cite{2}, p.210), we have
  98. $$
  99. \frac{\partial u}{\partial n_{pq}} = (|Du|^{p-2}Du + |Du|^{q-2}Du,n)\ \mbox{for all}\ u\in C^1(\overline\Omega),
  100. $$
  101. with $n(\cdot)$ being the outward unit normal on $\partial\Omega$. The boundary coefficient $\beta\in C^{0,\alpha}(\partial\Omega)$ with $0<\alpha<1$ and $\beta(z)\geq0$ for all $z\in\partial\Omega$.
  102. In the past nonlinear singular problems were studied only in the context of Dirichlet equations driven by the $p$-Laplacian (a homogeneous differential operator). We mention the works of Giacomoni-Schnidler-Taka\v c \cite{15}, Papageorgiou-Radulescu-Repovs \cite{10}, \cite{11}, Papageorgiou-Smyrlis \cite{13}, Papageorgiou-Winkert \cite{14}, Perera-Zhang \cite{16}. A comprehensive study of semilinear singular problems, can be found in the book of Gherghu-Radulescu \cite{4}.
  103. Using variational methods based on the critical point theory together with suitable truncation and comparison techniques, we prove a bifurcation type result, describing in a precise way the dependence of the set of positive solutions of \eqref{eqp} on the parameter. So, we produce a critical parameter value $\lambda^*>0$ such that for all $\lambda\in(0,\lambda^*)$ problem \eqref{eqp} has at least two positive solutions, for $\lambda=\lambda^*$ problem \eqref{eqp} has at least one positive solution and for $\lambda>\lambda^*$ there are no positive solutions for problem \eqref{eqp}.
  104. \section{Mathematical Background-Hypotheses}
  105. Let $X$ be a Banach space. By $X^*$ we denote the topological dual of $X$. Given $\varphi\in C^1(X,\RR)$, we say that $\varphi(\cdot)$ satisfies the "C-condition", if the following property holds
  106. $$
  107. \begin{array}{ll}
  108. \mbox{"Every sequence}\ \{u_n\}_{n\geq1}\subseteq X\ \mbox{such that} \\
  109. \{\varphi(u_n)\}_{n\geq1}\subseteq\RR\ \mbox{is bounded} \\
  110. \mbox{and}\ (1+||u_n||)\varphi'(u_n)\rightarrow0\ \mbox{in}\ X^*\ \mbox{as}\ n\rightarrow\infty,\\
  111. \mbox{admits a strongly convergent subsequence"}
  112. \end{array}
  113. $$
  114. This a compactness type condition on the functional $\varphi$ which leads to the minimax theory of the critical values of $\varphi(\cdot)$.
  115. The two main spaces in the analysis of problem \eqref{eqp}, are the Sobolev space $W^{1,p}(\Omega)$ and the Banach space $C'(\overline\Omega)$. By $||\cdot||$ we denote the norm of the Sobolev space $W^{1,p}(\Omega)$. We have
  116. $$
  117. ||u||=\left[||u||^p_p + ||Du||^p_p\right]^\frac{1}{p}\ \mbox{for all}\ u\in W^{1,p}(\Omega).
  118. $$
  119. The Banach space $C^1(\overline\Omega)$ is ordered with positive (order) cone given by
  120. $$
  121. C_+=\{u\in C^1(\overline\Omega):u(z)\geq0\ \mbox{for all}\ z\in\overline\Omega\}.
  122. $$
  123. This cone has a nonempty interior which contains the set
  124. $$
  125. D_+ = \{u\in C_+:u(z)>0\ \mbox{for all}\ z\in\overline\Omega\}.
  126. $$
  127. Note that $D_+$ is the interior of $C_+$ when the latter is endowed with the weaker $C(\overline{\Omega})$-norm topology.
  128. To take care of the Robin boundary condition, we will also use the "boundary" Lebesgue spaces $L^q(\partial\Omega) (1\leq q\leq\infty)$. More precisely, on $\partial\Omega$ we consider the $(N-1)$-dimensional Hausdorff (surface) measure $\sigma(\cdot)$. Using this measure on $\partial\Omega$ we can define in the usual way the Lebesgue spaces $L^q(\partial\Omega) (1\leq q\leq\infty)$. We know that there exists a continuous, linear map $\gamma_0 W^{1,p}(\Omega)\rightarrow L^p(\partial\Omega)$, known as the "trace map" such that
  129. $$
  130. \gamma_0(u)=u|_{\partial\Omega}\ \mbox{for all}\ u\in W^{1,p}(\Omega)\cap C(\overline\Omega).
  131. $$
  132. So, the trace map extends the notion of boundary values to all Sobolev functions. We have
  133. $$
  134. im\gamma_0= W^{\frac{1}{p},p}(\partial\Omega)(\frac{1}{p}+\frac{1}{p'}=1)\ \mbox{and}\ ker\gamma_0 = W^{1,p}_0(\Omega).
  135. $$
  136. The trace map $\gamma_0$ is compact into $L^q(\partial\Omega)$ for all $q\in \left[1,\frac{(N-1)p}{N-p}\right)$ if $N>p$ and into $L^q(\partial\Omega)$ for all $q\geq1$ if $p\geq N$. In the sequel for the sake of notational simplicity, we drop the use of the trace map $\gamma_0(\cdot)$. All restrictions of Sobolev functions on $\partial\Omega$ are understood in the sense of traces.
  137. For every $r\in(1,+\infty)$ let $A_r:W^{1,r}(\Omega)\rightarrow W^{1,r}(\Omega)^*$ be defined by
  138. $$
  139. \langle A_r(u),h\rangle = \int_\Omega|Du|^{r-2}(Du,Dh)_{\RR^N}dz\ \mbox{for all}\ u,h\in W^{1,p}(\Omega).
  140. $$
  141. The following proposition sumarizes the main properties of this map (see Gasinski-Papageorgiou \cite{2}).
  142. \begin{prop}\label{prop1}
  143.     The map $A_r(\cdot)$ is bounded (that is, maps bounded sets to bounded sets) continuous, monotone (hence maximal monotone too) and of type $(S)_+$, that is, if $u_n\xrightarrow{w}u$ in $W^{1,r}(\Omega)$ and $\limsup_{n\rightarrow\infty}\langle A_r(u_n),u_n-u\rangle$, then
  144.     $$
  145.     u_n\rightarrow u\ \mbox{in}\ W^{1,r}(\Omega).
  146.     $$
  147. \end{prop}
  148. Evidently the $(S)_+$-property is useful in verifying the C-condition.
  149. Now we introduce the conditions on the potential function $\xi(\cdot)$ and on the boundary coefficient $\beta(\cdot)$.
  150. $H(\xi)$: $\xi\in L^\infty(\Omega)$ and $\xi(z)\geq0$ for almost all $z\in\Omega$.
  151. $H(\beta)$: $\beta\in C^{0,\alpha}(\partial\Omega)$ with $0<\alpha<1$ and $\beta(z)\geq0$ for all $z\in\partial\Omega$.
  152. $H_0$: $\xi\not\equiv0$ or $\beta\not\equiv0$.
  153. \begin{remark}\label{rem1}
  154.     When $\beta\equiv0$ we have the usual Neumann problem.
  155. \end{remark}
  156. The next two propositions can be found in Papageorgiou-Radulescu \cite{9}.
  157. \begin{prop}\label{prop2}
  158.     If $\xi\in L^\infty(\Omega)$, $\xi(z)\geq0$ for almost all $z\in\Omega$ and $\xi\not\equiv0$, then $c_0||u||^p\leq ||Du||^p_p + \int_\Omega \xi(z)|u|^pdz$ for some $c_0>0$, all $u\in W^{1,p}(\Omega)$.
  159. \end{prop}
  160. \begin{prop}\label{prop3}
  161.     If $\beta\in L^\infty(\partial\Omega), \beta(z)\geq0$ for $\sigma$\mbox{-}almost all $z\in\partial\Omega$ and $\beta\not\equiv0$, then $c_1||u||^p\leq ||Du||^p_p + \int_{\partial\Omega}\beta(z)|u|^pd\sigma$ for some $c_1>0$, all $u\in W^{1,p}(\Omega)$.
  162. \end{prop}
  163. In what follows let $\gamma_p:W^{1,p}(\Omega)\rightarrow\RR$ be defined by
  164. $$
  165. \gamma_p(u) = ||Du||^p_p + \int_\Omega\xi(z)|u|^pdz + \int_{\partial\Omega}\beta(z)|u|^pd\sigma\ \mbox{for all}\ u\in W^{1,p}(\Omega).
  166. $$
  167. In hypotheses $H(\xi), H(\beta), H_0$ hold, then from Propositions \ref{prop2} and \ref{prop3} we infer that
  168. \begin{equation}\label{eq1}
  169.     c_2||u||^p \leq \gamma_p(u)\ \mbox{for some}\ c_2>0,\ \mbox{all}\ u\in W^{1,p}(\Omega).
  170. \end{equation}
  171. As we already mentioned in the Introduction, our approach involves also truncation and comparison techniques. So, the next strong comparison principle, a slight variant of Proposition 4 of Papageorgiou-Smyrlis \cite{13}, will be useful.
  172. \begin{prop}\label{prop4} If $\hat\xi\in L^\infty(\Omega)$ with $\hat\xi(z)\geq0$ for almost all $z\in\Omega, h_1, h_2\in L^\infty(\Omega)$,
  173. $$
  174. 0<c_3\leq h_2(z)-h_1(z)\ \mbox{for almost all}\ z\in\Omega,
  175. $$
  176. and the functions $u_1,u_2\in C^1(\overline\Omega)\backslash\{0\}, u_1\leq u_2, u_1^{-\gamma}, u_2^{-\gamma}\in L^\infty(\Omega)$ satisfy
  177. $$
  178. \begin{array}{ll}
  179. -\Delta_p u_1 - \Delta_q u_1 + \hat\xi(z) u_1^{p-1} - u_1^{-\gamma}=h_1\ \mbox{for almost all}\ z\in\Omega,\\
  180. -\Delta_p u_2 - \Delta_q     u_2 + \hat\xi(z) u_2^{p-1} - u_2^{-\gamma}=h_2\ \mbox{for almost all}\ z\in\Omega.
  181. \end{array}
  182. $$
  183. then $u_2-u_1\in intC_+$.
  184. \end{prop}
  185. Consider a Caratheodory function $f_0:\Omega\times\RR\rightarrow\RR$ satisfying
  186. $$
  187. |f_0(z,x)|\leq a_0(z)[1+|x|^{r-1}]\ \mbox{for almost all}\ z\in\Omega,\ \mbox{all}\ x\in\RR,
  188. $$
  189. with $a_0\in L^\infty(\Omega)$ and $1<r\leq p^*=\left\{\begin{array}{ll}\frac{Np}{N-p}&\mbox{if}\ p<N\\+\infty &\mbox{if}\ N\leq p\end{array}\right.$ (the critical Sobolev exponent corresponding to $p$). We set $F_0(z,x)=\int^x_0 f_0(z,s)ds$ and consider the $C^1$-functional $\varphi_0:W^{1,p}(\Omega)\rightarrow\RR$ defined by
  190. $$
  191. \varphi_0(u)=\frac{1}{p}\gamma_p(u) + \frac{1}{q}||Du||^q_q - \int_\Omega F_0(z,u)dz\ \mbox{for all}\ u\in W^{1,p}(\Omega)\ \mbox{(recall $q<p$)}
  192. $$
  193. The next proposition can be found in Papageorgiou-Radulescu \cite{8} and essentially is an outgrowth of the nonlinear regularity theory of Lieberman \cite{6}.
  194. \begin{prop}\label{prop5}
  195.     If $u_0\in W^{1,p}(\Omega)$ is a local $C^1(\overline\Omega)$-minimizer of $\varphi_0$, that is, there exists $\rho_0>0$ such that
  196.     $$
  197.     \varphi_0(u_0)\leq\varphi_0(u_0+h)\ \mbox{for all}\ ||h||_{C^1(\overline\Omega)}\leq\rho_0,
  198.     $$
  199.     then $u_0\in C^{1,\alpha}(\overline\Omega)$ for some $\alpha\in(0,1)$ and $u_0$ is also a local $W^{1,p}(\Omega)$-minimizer of $\varphi_0$, that is, there exists $\rho_1>0$ such that
  200.     $$
  201.     \varphi_0(u_0)\leq\varphi_0(u+h)\ \mbox{for all}\ ||h||\leq\rho_1.
  202.     $$
  203.    
  204.     The next fact about ordered Banach spaces, is useful in producing upper bounds for functions and can be found in Gasinski-Papageorgiou \cite{3} (Problem 4.180, p.680).
  205. \end{prop}
  206. \begin{prop}\label{prop6}
  207.     If $X$ is an ordered Banach space with positive (order) cone $K$,
  208.     $$
  209.     int K\neq\varnothing\ \mbox{and}\ e\in int K
  210.     $$
  211.     then for every $u\in K$ we can find $\lambda_u>0$ such that $\lambda_u e-u\in K$.
  212. \end{prop}
  213. Under hypotheses $H(\xi), H(\beta), H_0$, the differential operator $\Delta u\rightarrow-\Delta_p u + \xi(z)|u|^{p-2}u$ with the Robin boundary condition, has a principal eigenvalue $\hat\lambda_1(p)>0$ which is isolated, simple and admits the following variational characterization
  214. $$
  215. \hat\lambda_1(p)=inf\left[\frac{\gamma_p(u)}{||u||^p_p}:u\in W^{1,p}(\Omega),u\neq0\right].
  216. $$
  217. The infimum is realized on the corresponding one-dimensional eigenspace, the elements of which have fixed sign. By $\hat{u}_1(p)$ we denote the positive, $L^p$-normalized (that is, $||\hat{u}_1(p)||_p=1$) eigenfunction corresponding to $\hat\lambda_1(p)>0$. The nonlinear Hopf's theorem (see, for example, Gasinski-Papageorgiou \cite{2}, p.738), we have $\hat{u}_1(p)\in D_+$.
  218. Let us fix some basic notation which we will use throughout this work. So, if $x\in\RR$, we set $x^\pm=\max\{\pm x,0\}$ and the for $u\in W^{1,p}(\Omega)$ we define $u^\pm(z)=u(z)^\pm$ for all $z\in\Omega$. We know that
  219. $$
  220. u^\pm\in W^{1,p}(\Omega), u=u^+-u^-, |u|=u^++u^-.
  221. $$
  222. If $\varphi\in C^1(W^{1,p}(\Omega),\RR)$, then by $K_\varphi$ we denote the critical set of $\varphi$, that is,
  223. $$
  224. K_\varphi = \{u\in W^{1,p}(\Omega):\varphi'(u)=0\}.
  225. $$
  226. Also, if $u,y\in W^{1,p}(\Omega)$, with $u\leq y$, then we define
  227. $$
  228. \begin{array}{ll}
  229.     [u,y]=\{h\in W^{1,p}(\Omega): u(z)\leq h(z)\leq y(z)\ \mbox{for almost all}\ z\in\Omega\},
  230.     [u) = \{h\in W^{1,p}(\Omega): u(z)\leq h(z)\ \mbox{for almost all}\ z\in\Omega\},
  231. \end{array}
  232. $$
  233. $int_{C^1(\overline\Omega)}[u,y]$ the interior in the $C^1(\overline\Omega)$-norm of $[u,y]\cap C^1(\overline\Omega)$.
  234. Now we introduce our hypotheses on the perturbation $f(z,x)$.
  235. $H(f)$: $f:\Omega\times\RR\rightarrow\RR$ is a Caratheodory function such that $f(z,0)=0$ for almost all $z\in\Omega$ and
  236. \begin{itemize}
  237.     \item [(i)] $f(z,x)\leq a(z)[1+x^{r-1}]$ for almost all $z\in\Omega$, all $x\geq0$ with $a\in L^\infty(\Omega), p<r<p^*$;
  238.     \item [(ii)] if $F(z,x)=\int_0^x f(z,s)ds$, then $\lim_{x\rightarrow+\infty}\frac{F(z,x)}{x^p}=+\infty$ uniformly for almost all $z\in\Omega$;
  239.     \item [(iii)] there exists $\tau\in((r-p)\max\{\frac{N}{p},1\},p^*)$ such that
  240.         $$
  241.         0<\hat\beta_0\leq\liminf_{x\rightarrow+\infty}\frac{f(z,x)x-p F(z,x)}{x^\tau}\ \mbox{uniformly for almost all}\ z\in\Omega;
  242.         $$
  243.     \item [(iv)] for every $\vartheta>0$, there exists $m_\vartheta>0$ such that for almost all
  244. \end{itemize}
  245.  
  246.  
  247.  
  248.  
  249.  
  250.  
  251.  
  252.  
  253.  
  254.  
  255.  
  256. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement