Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- TypeError Traceback (most recent call last)
- Cell In[17], line 10
- 7 break
- 9 #processed_query = embeddings_model.encode([query])
- ---> 10 result = qa({"question":query,"chat_history":chat_history})
- 12 pattern = r'Helpful Answer:.*'
- 13 match = re.search(pattern, result['answer'], re.DOTALL)
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\chains\base.py:310, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)
- 308 except BaseException as e:
- 309 run_manager.on_chain_error(e)
- --> 310 raise e
- 311 run_manager.on_chain_end(outputs)
- 312 final_outputs: Dict[str, Any] = self.prep_outputs(
- 313 inputs, outputs, return_only_outputs
- 314 )
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\chains\base.py:304, in Chain.__call__(self, inputs, return_only_outputs, callbacks, tags, metadata, run_name, include_run_info)
- 297 run_manager = callback_manager.on_chain_start(
- 298 dumpd(self),
- 299 inputs,
- 300 name=run_name,
- 301 )
- 302 try:
- 303 outputs = (
- --> 304 self._call(inputs, run_manager=run_manager)
- 305 if new_arg_supported
- 306 else self._call(inputs)
- 307 )
- 308 except BaseException as e:
- 309 run_manager.on_chain_error(e)
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\chains\conversational_retrieval\base.py:148, in BaseConversationalRetrievalChain._call(self, inputs, run_manager)
- 144 accepts_run_manager = (
- 145 "run_manager" in inspect.signature(self._get_docs).parameters
- 146 )
- 147 if accepts_run_manager:
- --> 148 docs = self._get_docs(new_question, inputs, run_manager=_run_manager)
- 149 else:
- 150 docs = self._get_docs(new_question, inputs) # type: ignore[call-arg]
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\chains\conversational_retrieval\base.py:305, in ConversationalRetrievalChain._get_docs(self, question, inputs, run_manager)
- 297 def _get_docs(
- 298 self,
- 299 question: str,
- (...)
- 302 run_manager: CallbackManagerForChainRun,
- 303 ) -> List[Document]:
- 304 """Get docs."""
- --> 305 docs = self.retriever.get_relevant_documents(
- 306 question, callbacks=run_manager.get_child()
- 307 )
- 308 return self._reduce_tokens_below_limit(docs)
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\schema\retriever.py:211, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs)
- 209 except Exception as e:
- 210 run_manager.on_retriever_error(e)
- --> 211 raise e
- 212 else:
- 213 run_manager.on_retriever_end(
- 214 result,
- 215 **kwargs,
- 216 )
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\schema\retriever.py:204, in BaseRetriever.get_relevant_documents(self, query, callbacks, tags, metadata, run_name, **kwargs)
- 202 _kwargs = kwargs if self._expects_other_args else {}
- 203 if self._new_arg_supported:
- --> 204 result = self._get_relevant_documents(
- 205 query, run_manager=run_manager, **_kwargs
- 206 )
- 207 else:
- 208 result = self._get_relevant_documents(query, **_kwargs)
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\schema\vectorstore.py:656, in VectorStoreRetriever._get_relevant_documents(self, query, run_manager)
- 652 def _get_relevant_documents(
- 653 self, query: str, *, run_manager: CallbackManagerForRetrieverRun
- 654 ) -> List[Document]:
- 655 if self.search_type == "similarity":
- --> 656 docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
- 657 elif self.search_type == "similarity_score_threshold":
- 658 docs_and_similarities = (
- 659 self.vectorstore.similarity_search_with_relevance_scores(
- 660 query, **self.search_kwargs
- 661 )
- 662 )
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\vectorstores\faiss.py:509, in FAISS.similarity_search(self, query, k, filter, fetch_k, **kwargs)
- 489 def similarity_search(
- 490 self,
- 491 query: str,
- (...)
- 495 **kwargs: Any,
- 496 ) -> List[Document]:
- 497 """Return docs most similar to query.
- 498
- 499 Args:
- (...)
- 507 List of Documents most similar to the query.
- 508 """
- --> 509 docs_and_scores = self.similarity_search_with_score(
- 510 query, k, filter=filter, fetch_k=fetch_k, **kwargs
- 511 )
- 512 return [doc for doc, _ in docs_and_scores]
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\vectorstores\faiss.py:390, in FAISS.similarity_search_with_score(self, query, k, filter, fetch_k, **kwargs)
- 369 def similarity_search_with_score(
- 370 self,
- 371 query: str,
- (...)
- 375 **kwargs: Any,
- 376 ) -> List[Tuple[Document, float]]:
- 377 """Return docs most similar to query.
- 378
- 379 Args:
- (...)
- 388 L2 distance in float. Lower score represents more similarity.
- 389 """
- --> 390 embedding = self._embed_query(query)
- 391 docs = self.similarity_search_with_score_by_vector(
- 392 embedding,
- 393 k,
- (...)
- 396 **kwargs,
- 397 )
- 398 return docs
- File D:\anaconda3\envs\gpt\Lib\site-packages\langchain\vectorstores\faiss.py:155, in FAISS._embed_query(self, text)
- 153 return self.embedding_function.embed_query(text)
- 154 else:
- --> 155 return self.embedding_function(text)
- File D:\anaconda3\envs\gpt\Lib\site-packages\torch\nn\modules\module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
- 1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
- 1517 else:
- -> 1518 return self._call_impl(*args, **kwargs)
- File D:\anaconda3\envs\gpt\Lib\site-packages\torch\nn\modules\module.py:1527, in Module._call_impl(self, *args, **kwargs)
- 1522 # If we don't have any hooks, we want to skip the rest of the logic in
- 1523 # this function, and just call forward.
- 1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
- 1525 or _global_backward_pre_hooks or _global_backward_hooks
- 1526 or _global_forward_hooks or _global_forward_pre_hooks):
- -> 1527 return forward_call(*args, **kwargs)
- 1529 try:
- 1530 result = None
- File D:\anaconda3\envs\gpt\Lib\site-packages\torch\nn\modules\container.py:215, in Sequential.forward(self, input)
- 213 def forward(self, input):
- 214 for module in self:
- --> 215 input = module(input)
- 216 return input
- File D:\anaconda3\envs\gpt\Lib\site-packages\torch\nn\modules\module.py:1518, in Module._wrapped_call_impl(self, *args, **kwargs)
- 1516 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc]
- 1517 else:
- -> 1518 return self._call_impl(*args, **kwargs)
- File D:\anaconda3\envs\gpt\Lib\site-packages\torch\nn\modules\module.py:1527, in Module._call_impl(self, *args, **kwargs)
- 1522 # If we don't have any hooks, we want to skip the rest of the logic in
- 1523 # this function, and just call forward.
- 1524 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks
- 1525 or _global_backward_pre_hooks or _global_backward_hooks
- 1526 or _global_forward_hooks or _global_forward_pre_hooks):
- -> 1527 return forward_call(*args, **kwargs)
- 1529 try:
- 1530 result = None
- File D:\anaconda3\envs\gpt\Lib\site-packages\sentence_transformers\models\Transformer.py:62, in Transformer.forward(self, features)
- 60 def forward(self, features):
- 61 """Returns token_embeddings, cls_token"""
- ---> 62 trans_features = {'input_ids': features['input_ids'], 'attention_mask': features['attention_mask']}
- 63 if 'token_type_ids' in features:
- 64 trans_features['token_type_ids'] = features['token_type_ids']
- TypeError: string indices must be integers, not 'str'
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement