lalkaed

16_1

Jun 6th, 2018
41
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 3.25 KB | None | 0 0
  1. \documentclass[12pt,leqno]{article}
  2. \usepackage[a4paper,top=3cm,bottom=3cm,left=3cm,right=3cm]{geometry}
  3. \usepackage{amssymb}
  4. \usepackage{amsmath}
  5. \usepackage[T1]{fontenc}
  6. \usepackage[utf8]{inputenc}
  7. \usepackage[english]{babel}
  8. \usepackage{fancyhdr}
  9. \usepackage[center]{titlesec}
  10. \usepackage{indentfirst}
  11.  
  12. \setcounter{page}{110}
  13. \setcounter{section}{4}
  14. \setcounter{subsection}{10}
  15.  
  16. \numberwithin{equation}{section}
  17.  
  18. \pagestyle{fancy}
  19. \fancyhf{}
  20. \renewcommand{\headrulewidth}{0pt}
  21. \chead{\tiny{4. ELLIPTIC PDES}}
  22. \lhead{\tiny\thepage}
  23.  
  24. \makeatletter
  25. \renewcommand*{\@cite@ofmt}{\bfseries\hbox}
  26. \makeatother
  27.  
  28. \begin{document}
  29.  
  30. \hfill\begin{minipage}{\dimexpr\textwidth-2cm}
  31. In that case, the solutions are
  32. $$u = \sum_{\lambda_n \neq \lambda} \frac{\left(f, \phi_n\right)}{\lambda_n - \lambda} \phi_n + \sum_{n=M}^{N} c_n \phi_n$$
  33. where $\left\lbrace c_M,\dots,c_N\right\rbrace$ are arbitrary real constants.
  34. \end{minipage}
  35. \subsection{Interior regularity}
  36. \setcounter{equation}{33}
  37. Roughly speaking, solutions of elliptic PDFe are as smooth as the data allows.
  38. For boundary value problems, it is convenient to consider the regularity of the
  39. solution in the interior of the domain and near the boundary speparately. We begin
  40. by studying the interior regularity of solutions. We follow closely the presentation
  41. in \cite{SomePresentation}.
  42. To motivate the regularity theory, consider the following simple \emph{a priori} esti\-1mate
  43. for the Laplacian. Suppose that $u \in C_c^{\infty}(\mathbb{R}^n)$. Then, integrating by parts
  44. twice, we get
  45. \begin{equation*}
  46. \begin{split}
  47. \int (\Delta u)^2 dx & = \sum_{i,j=1}^{n} \int (\partial_{ii}^2 u) (\partial_{jj}^2 u) \ dx \\
  48. & = - \sum_{i,j=1}^{n} \int (\partial_{iij}^3 u) (\partial_{j}^2 u) \ dx \\
  49. & = \sum_{i,j=1}^{n} \int (\partial_{ij}^2 u) (\partial_{ij}^2 u) \ dx \\
  50. & = \int \left|D^2 u\right|^2 \ dx.
  51. \end{split}
  52. \end{equation*}
  53. Hence, if $- \Delta u = f$, then
  54. $$ \lVert D^2 u \rVert_{L^2} = \lVert f \rVert_{L^2}^2.$$
  55. Thus, w can control the $L^2$-norm of all second derivatives of $u$ by the $L^2$-norm
  56. of the Laplacian of $u$. This estimate suggest that we should have $u \in H_{loc}^2$ if
  57. $f, u \in L^2$, as is in fact true. The above computation is, however, not justified for
  58. weak solutions that belong to $H^1$; as far as we know from previous existence
  59. theory, such solutions may not event posses second-order weak derivatives.
  60. We will consider a PDE
  61. \begin{align}
  62. \label{eq:firstEq}
  63. Lu = f && \text{in } \Omega
  64. \end{align}
  65. where $\Omega$ is an open set in $\mathbb{R}^n, f \in L^2(\Omega)$, and $l$ is a uniformly elliptic of the form
  66. \begin{equation}
  67. \label{eq:secondEq}
  68. Lu = - \sum_{i,j=1}^{n} \partial_i (a_{ij} \partial_j u).
  69. \end{equation}
  70. It is straightforward to extend the proof of the regularity theorem to uniformmly
  71. elliptic operations thath contain lower-order terms \cite{SomePresentation}.
  72. A function $u \in H^i(\Omega)$ is a weak solution of (\ref{eq:firstEq})--(\ref{eq:secondEq}) if
  73. \begin{align}
  74. \label{eq:thirdEq}
  75. a(u,v) = (f,v) && \text{for all } v \in H_0^1(\Omega),
  76. \end{align}
  77.  
  78. \begin{thebibliography}{x}
  79. \makeatletter
  80. \addtocounter{\@listctr}{8}
  81. \makeatother
  82.  
  83. \bibitem{SomePresentation}
  84. Some Presentation
  85. \end{thebibliography}
  86.  
  87. \end{document}
Add Comment
Please, Sign In to add comment