Advertisement
Guest User

Untitled

a guest
Feb 18th, 2016
498
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 155.00 KB | None | 0 0
  1. Cover
  2. Preface
  3. About the Editor
  4. Table of Contents
  5. Contributors
  6. Biographies of Contributors
  7. Introduction
  8. Volume I: Nuclear Engineering Fundamentals
  9. 1: Neutron Cross Section Measurements
  10. 1: Introduction
  11. 2: History
  12. 3: Currently Active Laboratories
  13. 3.1 Time-of-Flight Laboratories
  14. 3.1.1 The Gaerttner LINAC Laboratory
  15. 3.1.2 The Los Alamos Neutron Science Center
  16. 3.1.3 The ORELA Laboratory at Oak Ridge National Laboratory
  17. 3.1.4 GELINA at the JRC-IRMM in Geel
  18. 3.1.5 The n_TOF Facility at CERN
  19. 3.1.6 The IREN Facility at Dubna
  20. 3.1.7 The PNF Laboratory at Pohang
  21. 3.1.8 Electron Linac at Kyoto University Research ReactorInstitute, KURRI
  22. 3.2 Monoenergetic Fast Neutron Facilities
  23. 3.2.1 Neutron Energies Below 1: MeV
  24. 3.2.2 Neutron Energies in the MeV Region
  25. 3.2.3 Neutron Energies Near 14: MeV
  26. 3.2.4 Neutron Energies Above 30 MeV
  27. 4: Neutron Cross Sections
  28. 4.1 Introduction
  29. 4.2 Total Cross Section
  30. 4.3 Partial Cross Section
  31. 4.4 Resonance Cross Section
  32. 4.5 High Energy Cross Section
  33. 5: Cross Section Measurements
  34. 5.1 Thermal Energy Region
  35. 5.1.1 Thermal Flux Averaged Cross Section
  36. 5.2 Resonance Energy Region
  37. 5.3 Unresolved Resonance and Continuum Energy Region
  38. 5.4 The Neutron Time of Flight Method
  39. 5.4.1 Neutron Density and Flux Distributions at Thermal Energies
  40. 5.5 Surrogate Reactions
  41. 5.6 Cross Section Standards
  42. 6: Nuclear Resonances and the R-Matrix Formalism
  43. 6.1 Introduction
  44. 6.1.1 Channel Representation
  45. 6.1.2 The Wave Function in the External Region
  46. 6.1.3 The Collision Matrix U
  47. 6.1.4 The Relation Between the Cross Sections andthe Collision Matrix U
  48. 6.1.5 The Wave Function in the Internal Region
  49. 6.1.6 The Relation Between the R-Matrix and the Collision Matrix U
  50. 6.2 Approximations of the R-Matrix
  51. 6.2.1 The Breit–Wigner Single Level Approximation
  52. 6.2.2 The Breit–Wigner Multi Level Approximation
  53. 6.2.3 The Reich–Moore Approximation
  54. 6.3 Average Cross Sections
  55. 7: Concluding Remarks
  56. References
  57. 2: Evaluated Nuclear Data
  58. 1: Evaluation Methodology for Neutron Data
  59. 1.1 Basic Ingredients
  60. 1.2 Thermal and Resolved Resonance Region
  61. 1.2.1 Thermal Energy Region
  62. 1.2.2 Westcott Factors and Resonance Integrals
  63. 1.2.3 Resolved Resonance Energy Region
  64. 1.3 Unresolved Resonance Region
  65. 1.4 Fast Neutron Region
  66. 1.4.1 Optical Model and Direct Reactions
  67. 1.4.2 Compound Nucleus Decay
  68. 1.4.3 Width Fluctuation Correction
  69. 1.4.4 Preequilibrium Models
  70. 1.4.5 Light Nuclei
  71. 1.5 Fission
  72. 1.5.1 Fission Modeling
  73. 1.5.2 Prompt Fission Neutron Spectra
  74. 1.5.3 Peculiarities of Fission Cross Section Evaluation
  75. 2: Neutron Data for Actinides
  76. 2.1 235U Evaluation
  77. 2.1.1 235U, Unresolved Resonance Region
  78. 2.1.2 235U, Fast Neutron Region
  79. 2.2 238U Evaluation
  80. 2.2.1 238U, Resolved and Unresolved Resonance Region
  81. 2.2.2 238U, Fast Neutron Region
  82. 2.3 239Pu Evaluation
  83. 2.3.1 239Pu, Resonance Region
  84. 2.3.2 239Pu, Fast Neutron Region
  85. 2.4 232Th Evaluation
  86. 2.5 Minor Actinides
  87. 2.5.1 233U Evaluation
  88. 2.5.2 232,234,236,237,239,240,241U Evaluations
  89. 2.6 Thermal Constants
  90. 2.7 Nubars
  91. 2.8 Delayed Neutrons
  92. 2.8.1 Fission-Product Delayed Neutrons
  93. 2.8.2 235U Thermal nud
  94. 2.9 Fission Energy Release
  95. 2.9.1 Nuclear Heating
  96. 3: Neutron Data for Other Materials
  97. 3.1 Light Nuclei
  98. 3.2 Structural Materials
  99. 3.2.1 Evaluations of Major Structural Materials
  100. 3.2.2 New Evaluations for ENDF/B-VII.0
  101. 3.3 Fission Products
  102. 3.3.1 Priority Fission Products
  103. 3.3.2 Complete Isotopic Chains
  104. 3.3.3 Specific Case of 90Zr
  105. 3.3.4 Remaining Fission Products
  106. 4: Covariances for Neutron Data
  107. 4.1 Evaluation Methodology
  108. 4.1.1 Resonance Region
  109. SAMMY Covariance Method
  110. Atlas Covariance Method
  111. Low-Fidelity Covariance Method
  112. 4.1.2 Fast Neutron Region
  113. EMPIRE-KALMAN Covariance Method
  114. 4.2 Sample Case: Gd
  115. 4.3 Major Actinides
  116. 4.3.1 233,235,238U Covariances
  117. 4.3.2 239Pu Covariances
  118. 4.3.3 232Th Covariances
  119. 4.4 Covariance Libraries
  120. 4.4.1 Low-Fidelity Covariance Library
  121. 4.4.2 SCALE-6: Covariance Library
  122. 4.4.3 AFCI Covariance Library
  123. 5: Validation of Neutron Data
  124. 5.1 Criticality Testing
  125. 5.2 Fast U and Pu Benchmarks
  126. 5.3 Thermal U and Pu Benchmarks
  127. 5.3.1 235U Solution Benchmarks
  128. 5.3.2 U Fuel Rod Benchmarks
  129. 5.3.3 Pu Solution and MOX Benchmarks
  130. 5.4 Conclusions from Criticality Testing
  131. 5.5 Delayed Neutron Testing, eff
  132. 5.6 Reaction Rates in Critical Assemblies
  133. 5.7 Shielding and Pulsed-Sphere Testing
  134. 5.8 Testing of Thermal Values and Resonance Integrals
  135. 6: Other Nuclear Data of Interest
  136. 6.1 Fission Yields
  137. 6.2 Thermal Neutron Scattering
  138. 6.2.1 H2O and D2O
  139. 6.2.2 O in UO2: and U in UO2
  140. 6.2.3 H in ZrH
  141. 6.2.4 Other Modified Materials
  142. 6.3 Decay Data
  143. 6.3.1 Decay Heat Calculations
  144. 7: Evaluated Nuclear Data Libraries
  145. 7.1 Overview of Libraries
  146. 7.1.1 General Purpose Libraries
  147. 7.1.2 Special Purpose Libraries
  148. 7.1.3 Derived Libraries
  149. 7.2 ENDF-6: Format
  150. 7.3 ENDF/B-VII.0 (USA, 2006)
  151. 7.3.1 Overview of the ENDF/B-VII.0 Library
  152. 7.3.2 Processing and Data Verification
  153. 7.4 JEFF-3.1 (Europe, 2005)
  154. 7.5 JENDL-3.3 (Japan, 2002)
  155. 7.6 Web Access to Nuclear Data
  156. Acknowledgments
  157. References
  158. 3: Neutron Slowing Down and Thermalization
  159. 1: Thermal Neutron Scattering
  160. 1.1 Introduction
  161. 1.2 Chemical Binding
  162. 1.3 Coherent and Incoherent Scattering
  163. 1.4 The Quantum Mechanical Scattering Function
  164. 1.5 The Intermediate Scattering Function
  165. 1.6 Detailed Balance
  166. 1.7 The Scattering Law
  167. 1.8 The Phonon Expansion
  168. 1.9 The Short Collision Time Approximation
  169. 1.10 Diffusive Translations
  170. 1.11 Discrete Oscillators
  171. 1.12 Incoherent Elastic Scattering
  172. 1.13 Coherent Elastic Scattering
  173. 1.14 Example of Thermal Scattering in Graphite
  174. 1.15 Example of Thermal Scattering in Water
  175. 1.16 Example for Thermal Scattering in Heavy Water
  176. 1.17 Example for Thermal Scattering in Zirconium Hydride
  177. 1.18 Using the ENDF/B Thermal Scattering Evaluations
  178. 2: Neutron Thermalization
  179. 2.1 Introduction
  180. 2.2 Monte Carlo Simulations of Neutron Thermalization
  181. 2.3 Discrete Ordinates Methods
  182. 2.3.1 SN Theory
  183. 2.3.2 Transport Corrections
  184. 2.3.3 Fission Source
  185. 2.3.4 The Eigenvalue Iteration
  186. 2.3.5 SN Data Requirements
  187. 2.3.6 Example for HST42-5
  188. 2.3.7 Preparing SN Cross-Section Data
  189. 2.3.8 Example for an Infinite Pin-Cell Lattice
  190. 2.3.9 Monte Carlo vs. Multigroup
  191. 2.4 Collision Probability Methods
  192. 2.5 Size Effects in Thermalization
  193. 3: Steady-State Slowing Down
  194. 3.1 Introduction
  195. 3.2 Slowing-Down Cross Sections
  196. 3.3 Spectra for Elastic Downscatter
  197. 3.4 Spectra for Inelastic Downscatter
  198. 3.5 Resonance Cross Sections
  199. 3.5.1 Single-Level Breit–Wigner Representation
  200. 3.5.2 Multi-Level Breit–Wigner Representation
  201. 3.5.3 Reich–Moore Representation
  202. 3.5.4 Reich–Moore-Limited Representation
  203. 3.5.5 Angular Distributions
  204. 3.5.6 Resonance Reconstruction and Doppler Broadening
  205. 3.5.7 Thermal Constants
  206. 3.6 Resonance Slowing Down
  207. 3.7 Flux Calculations
  208. 3.8 Intermediate Resonance Self-Shielding
  209. 3.9 Unresolved Resonance Range Methods
  210. 4: Time and Space in Slowing Down
  211. 4.1 Introduction
  212. 4.2 Time Dependence of the Energy Spectrum
  213. 4.3 Time Dependence of the Spatial Distribution
  214. 4.4 Eigenvalues and Eigenfunctions
  215. 4.5 Analytic Age Theory
  216. 5: Concluding Remarks and Outlook
  217. References
  218. 4: Nuclear Data Preparation
  219. 1: Overview
  220. 1.1 Introduction
  221. 1.2 The ENDF/B Format
  222. 1.2.1 ENDF/B Tables and Interpolation
  223. 1.3 The Importance of Nuclear Data-Processing Codes
  224. 1.4 First-Order Approximations: Space, Energy, and Time
  225. 1.5 Basic Equations
  226. 1.6 Species of Particles
  227. 1.7 Evaluated Data
  228. 1.7.1 Neutron-Interaction Data
  229. Secondary-Neutron Distributions
  230. 1.7.2 Neutron-Induced Photon Production
  231. 1.7.3 Photon Interaction Data
  232. 1.8 Approximate Methods
  233. 1.8.1 Monte Carlo Versus Deterministic Codes
  234. 1.8.2 Continuous Energy
  235. 1.8.3 Multigroup
  236. 1.9 Summary
  237. 2: Reconstruction of Energy-Dependent Cross Sections
  238. 2.1 Introduction
  239. 2.2 Representation of Cross Sections
  240. 2.3 Tabulated Cross Sections
  241. 2.3.1 Linearized Cross Sections
  242. 2.4 Reconstructing the Contribution of Resonances
  243. 2.4.1 The Resolved-Resonance Region
  244. 2.4.2 Unresolved-Resonance Region
  245. 2.4.3 Adding Resonance and Background Cross Sections
  246. 2.4.4 Output Format
  247. 3: Doppler Broadening
  248. 3.1 Introduction
  249. 3.1.1 What Causes Doppler Broadening?
  250. 3.2 The Doppler-Broadening Equation
  251. 3.2.1 Mathematical Interpretation
  252. 3.3 Methods of Solution
  253. 3.3.1 Kernel Broadening
  254. 3.3.2 Tabulated Broadened Cross Sections
  255. 3.3.3 TEMPO and Psi–Chi Methods
  256. 3.3.4 Mathematical Comparisons
  257. 3.4 Numerical Results
  258. 3.4.1 Low Energies
  259. 3.4.2 Resonance Region
  260. 3.4.3 High Energies
  261. 4: Self-Shielding
  262. 4.1 Introduction
  263. 4.2 Narrow, Intermediate, and Wide Resonances
  264. 4.2.1 Narrow Resonances
  265. 4.2.2 Wide Resonances
  266. 4.2.3 Intermediate Resonances
  267. 4.3 Cross-section Dependence of Flux
  268. 4.4 Computation of Multigroup Cross Sections
  269. 4.4.1 Tabulated Cross Sections
  270. 4.4.2 Linearly Interpolable Data
  271. 4.4.3 Solution
  272. 4.4.4 Direct Integration
  273. 4.5 Comparison of Results
  274. 5: Transfer Matrix
  275. 5.1 Introduction
  276. 5.2 Solution
  277. 5.2.1 Uncorrelated Distributions
  278. 5.2.2 Angular Distributions
  279. 5.2.3 Energy Distributions
  280. 5.2.4 Correlated Distributions
  281. 5.2.5 Solution of the Inner Integral
  282. 5.2.6 Thermal-Scattering Law Data: S(,)
  283. 6: Group Collapse
  284. 6.1 Introduction
  285. 6.2 Noncoincident-Group Boundaries
  286. 7: The Multiband Method
  287. 7.1 Introduction
  288. 7.2 Multiband Equations
  289. 7.3 Multiband Parameters
  290. 7.4 Solution for Band Parameters
  291. 7.4.1 Analytical Solution for Two Bands
  292. 7.4.2 Generalization to N Bands
  293. 7.4.3 How Many Bands are Required?
  294. 7.5 Transfer Matrix
  295. 7.6 Boundary Condition
  296. 7.7 Example Results
  297. 7.7.1 Theoretical Cases
  298. 7.7.2 Bramblett–Czirr Plate Measurements
  299. 7.7.3 Criticality Calculations
  300. 7.7.4 Shielding Calculations
  301. 7.7.5 Fusion Reactor Blanket
  302. 7.8 Conclusions
  303. Acknowledgments
  304. References
  305. 5: General Principles of Neutron Transport
  306. 1: Introduction
  307. 2: Derivation of the Neutron Transport (Linear Boltzmann) Equation
  308. 2.1 Independent Variables
  309. 2.2 The Basic Physics of Neutron Transport
  310. 2.3 The Angular Neutron Density and Angular Flux
  311. 2.4 Internal and Boundary Sources
  312. 2.5 The Time-Dependent Equations of Neutron Transport
  313. 2.6 Time-Dependent Neutron Transport Without Delayed Neutrons
  314. 2.7 The Steady-State Neutron Transport Equation
  315. 2.8 k-Eigenvalue Problems
  316. 2.9 The Monoenergetic Neutron Transport Equation
  317. 2.10 Mathematical Issues
  318. 2.10.1 Existence, Uniqueness, and Nonnegativity of Transport Solutions
  319. 2.10.2 The nth Collided Fluxes
  320. 2.10.3 Smoothness of the Angular Flux
  321. 2.11 Generalizations of the Neutron Transport Equation
  322. 2.11.1 Reflecting Boundaries
  323. 2.11.2 Periodic Boundaries
  324. 2.11.3 Anisotropic Sources
  325. 2.11.4 Coupled Neutron/Photon Transport
  326. 2.11.5 Temperature-Dependent Cross Sections
  327. 2.11.6 Advection and Diffusion of Fission Products
  328. 2.12 Limitations of the Neutron Transport Equation
  329. 2.13 Discussion
  330. 3: The Transport Equation in Special Geometries
  331. 3.1 3-D Cartesian Geometry
  332. 3.2 1-D Planar Geometry
  333. 3.3 2-D (X,Y)-Geometry
  334. 3.4 1-D Spherical Geometry
  335. 3.5 3-D normalnormal(r, thetav, z)-Geometry
  336. 3.6 2-D normalnormal(r,z)-Geometry
  337. 3.7 1-D Cylindrical Geometry
  338. 3.8 Discussion
  339. 4: Integral Equation for Neutron Transport
  340. 4.1 Integral Equation for the Angular Flux
  341. 4.2 The Integral Equation for the Scalar Flux
  342. 4.3 Discussion
  343. 5: The Adjoint Neutron Transport Equation
  344. 5.1 Definitions
  345. 5.2 Illustrative Example
  346. 5.3 The Adjoint Transport Equation
  347. 5.4 Adjoint Flux as an Importance Function
  348. 5.4.1 Source-Detector Problems
  349. 5.5 Green's Functions
  350. 5.6 Discussion
  351. 6: The Multigroup and One-Speed Neutron Transport Equations
  352. 6.1 The Continuous-Energy Problem
  353. 6.2 The Multigroup Transport Equations
  354. 6.3 The Within-Group and One-Group Transport Equations
  355. 6.4 Discussion
  356. 7: The Age and Wigner Approximations
  357. 7.1 The Infinite-Medium Neutron Spectrum Equation
  358. 7.2 The "Conservative'' Form of the Neutron Transport Equation
  359. 7.3 The Age Approximation
  360. 7.4 The Wigner Approximation
  361. 7.5 Discussion
  362. 8: The Diffusion Approximation
  363. 8.1 Derivation of the Diffusion Equation
  364. 8.2 Homogenized Diffusion Theory
  365. 8.3 Spherical Harmonic (PN) and Simplified Spherical Harmonic (SPN)Approximations
  366. 8.4 Discussion
  367. 9: The Point Kinetics Approximation
  368. 9.1 Preliminaries
  369. 9.2 The Scaled Transport and Neutron Precursor Equations
  370. 9.3 Asymptotic Derivation of the Point Kinetics Equations
  371. 9.4 Discussion
  372. 10: Computational Neutron Transport
  373. 10.1 Monte Carlo Methods
  374. 10.2 Deterministic Methods
  375. 10.3 Hybrid Monte Carlo/Deterministic Methods
  376. 10.4 Discussion
  377. 11: Concluding Remarks
  378. References
  379. 6: Nuclear Materials and Irradiation Effects
  380. 1: Introduction
  381. 1.1 Definition of Nuclear Materials
  382. 1.2 Radiation Fluxes in Nuclear Reactors
  383. 2: Radiation Damage
  384. 2.1 Irradiation Damage by Neutrons
  385. 2.1.1 Inelastic Interactions: Chemical Changes
  386. 2.1.2 Elastic Interactions by Neutrons
  387. 2.1.3 Damage Cross Section
  388. 2.1.4 Computation of Damage for Power Reactors
  389. 2.1.5 Time Evolution of the Point Defects
  390. PD Clustering
  391. 2.2 Effects on Microstructure and Engineering Properties
  392. Physical Properties
  393. Diffusion Under Irradiation
  394. 2.2.1 PD Clustering, Dislocation Loop, and Cavities
  395. 2.2.2 Segregations, Phase Transformations, and Amorphization
  396. Solute Transport and Segregations
  397. Phase Diagrams Under Irradiation
  398. 2.2.3 Computational Techniques for Nuclear Material Science
  399. First Principle (Ab Initio)
  400. Molecular Dynamics
  401. Monte Carlo
  402. 2.2.4 Impact of Irradiation on Engineering Design Properties
  403. Thermoelastic Properties
  404. Radiation Hardening and Plastic Behavior
  405. Embrittlement and Reduction in Ductility
  406. Irradiation Creep
  407. 2.3 Irradiation Damage in Ceramics
  408. 2.3.1 General Aspects
  409. 2.3.2 Irradiation Damage
  410. 2.3.3 Changes in Microstructure
  411. 2.3.4 Change in Properties
  412. 2.4 Irradiation Damage by Photons and Electrons
  413. 2.4.1 Radiation-Induced Conductivity in Ceramics
  414. 2.4.2 Radiolysis: Water and Polymers
  415. Mechanisms of Radiolysis
  416. Technological Impact ofWater Radiolysis for the Nuclear industry
  417. Radiolysis in Polymers
  418. 3: Impact of Irradiation Damage on Structural Material Behavior
  419. 3.1 Ferritic Steels (LWR Pressure Vessel)
  420. 3.1.1 General Aspects
  421. 3.1.2 Microstructural Aspects
  422. 3.1.3 Pressure Vessel Steel Embrittlement
  423. Fracture Mechanics
  424. Master Curve and New Issues
  425. 3.2 Austenitic Stainless Steels (LWR Internals)
  426. 3.2.1 Changes in Microstructure and Mechanical Properties
  427. Irradiation-Assisted Stress Corrosion Cracking
  428. 3.2.2 Radiation-Induced Segregation
  429. 4: Reactor Core Materials
  430. 4.1 Stainless Steels in SFR
  431. 4.1.1 Changes in Microstructure
  432. 4.1.2 Swelling
  433. 4.1.3 Irradiation Hardening and Irradiation Creep
  434. Irradiation Hardening
  435. Irradiation Creep
  436. 4.1.4 Development of Low Swelling Alloys
  437. 4.2 Zirconium Alloys in Water Reactors
  438. 4.2.1 Zirconium Alloys: Zircaloy and Zr-Nb
  439. Industrial Alloys
  440. Microstructure
  441. Deformation Processing and Textures
  442. Mechanical Properties
  443. 4.2.2 Dislocation Loops: Growth and Irradiation Creep
  444. Irradiation Effects in the Zr Matrix
  445. Irradiation Effects on Second Phases
  446. Irradiation Growth
  447. Irradiation Creep
  448. 4.2.3 Postirradiation Plastic Behavior
  449. 4.2.4 Corrosion Behavior and Effects of Irradiation on Corrosion
  450. General Corrosion Behavior
  451. Hydrogen Pick-Up
  452. 4.2.5 Interaction with Fission Products I-SCC and PCI Failure
  453. 4.3 Carbon and Graphite
  454. 4.3.1 Nuclear Graphite
  455. 4.3.2 Behavior Under Irradiation
  456. 4.3.3 Creep and Wigner Effect
  457. 4.3.4 Corrosion
  458. 5: Fusion Reactor Materials
  459. 5.1 Specific Environment of the Fusion Reactors
  460. 5.2 Plasma Facing and High Heat Flux Components
  461. 5.3 First Wall and the Blanket Structures
  462. 5.4 Blankets and Tritium Breeding Materials
  463. 6: Corrosion in Nuclear Environments
  464. 7: Prospects
  465. List of Acronyms
  466. Appendix
  467. Industrial Steels for Reactor Design
  468. References
  469. 7: Mathematics for Nuclear Engineering
  470. 1: Finite-Dimensional Vector Spaces
  471. 1.1 Vectors: Definitions and Operations
  472. 1.2 Matrices: Basic Definitions and Properties
  473. 2: Elements of Functional Analysis
  474. 2.1 Operators in Vector Spaces
  475. 2.2 Differential Calculus
  476. 3: Special Functions
  477. 3.1 The Gamma Function:Gamma (z)
  478. 3.2 The Beta Function
  479. 3.3 The psi Function
  480. 3.4 The Generalized Zeta and Riemann's Zeta Functions
  481. 3.5 Bernoulli's Numbers and Polynomials
  482. 4: Bessel Functions
  483. 4.1 Bessel Functions of General Order
  484. 4.2 Modified Bessel Functions of General Order
  485. 4.3 Bessel Functions of Integer Order
  486. 4.4 Modified Bessel Functions of Integer Order
  487. 4.5 Spherical Bessel Functions
  488. 4.6 Miscellaneous Formulas
  489. 4.7 Zeros of Bessel Functions
  490. 4.8 Fourier-Bessel and Dini Series
  491. 4.9 Asymptotic Expansions
  492. 4.10 Integrals
  493. 4.11 Additional Theorems and Related Series
  494. 5: Associated Legendre Functions
  495. 5.1 Differential Equation
  496. 5.2 Asymptotic Series for Large Values of nu
  497. 5.3 Recursion Relations
  498. 5.4 Spherical Functions (Associated Legendre Functions withIntegral Indices)
  499. 6: Orthogonal Polynomials
  500. 6.1 Legendre Polynomials: Pn(z)
  501. 6.2 Gegenbauer Polynomials: Clamdan(t)
  502. 6.3 Chebyshev Polynomials Tn(x) and Un(x)
  503. 6.4 Hermite Polynomials Hn(x)
  504. 6.5 Laguerre Polynomials
  505. 7: Probability Theory and Statistical Estimation
  506. 7.1 Introduction
  507. 7.2 Multivariate Probability Distributions
  508. 7.3 Expectations and Moments
  509. 7.4 Variance, Standard Deviation, Covariance, and Correlation
  510. 7.5 Commonly Encountered Probability Distributions
  511. 7.6 Central Limit Theorem
  512. 7.7 Statistical Estimation
  513. 7.8 Stationary Random Sequence and White Noise
  514. 8: Fourier Transforms
  515. 8.1 Fourier Transforms of Continuous Functions
  516. 8.2 Properties of Fourier Transform
  517. 8.3 Fourier Transform of Discrete Functions
  518. 8.4 Fourier Series
  519. Bibliography
  520. Volume II: Reactor Design
  521. 8: Multigroup Neutron Transport and Diffusion Computations
  522. 1: The Steady-State Boltzmann Equation
  523. 1.1 The Integro-Differential Form of the Transport Equation
  524. 1.2 The Characteristic Form of the Transport Equation
  525. 1.3 The Integral Form of the Transport Equation
  526. 1.4 Boundary and Continuity Conditions
  527. 1.5 The Steady-State Source Density
  528. 1.6 The Transport Correction
  529. 1.7 Multigroup Discretization
  530. 2: The First-Order Streaming Operator
  531. 2.1 Cartesian Coordinate System
  532. 2.2 Cylindrical Coordinate System
  533. 2.3 Spherical Coordinate System
  534. 3: The Spherical Harmonics Method
  535. 3.1 The Pn Method in 1D Slab Geometry
  536. 3.1.1 Discretization in Angle
  537. 3.1.2 Boundary Conditions
  538. 3.1.3 Difference Relations
  539. 3.2 The Pn Method in 1D Cylindrical Geometry
  540. 3.2.1 Discretization in Angle
  541. 3.2.2 Boundary Conditions
  542. 3.2.3 Difference Relations
  543. 3.3 The Pn Method in 1D Spherical Geometry
  544. 3.3.1 Discretization in Angle
  545. 3.3.2 Boundary Conditions
  546. 3.3.3 Difference Relations
  547. 3.4 The Simplified Pn Method in 2D Cartesian Geometry
  548. 3.4.1 Discretization in Angle
  549. 3.4.2 Difference Relations
  550. 4: The Collision Probability Method
  551. 4.1 The Interface Current Method
  552. 4.2 Scattering-Reduced Matrices and Power Iteration
  553. 4.3 Slab Geometry
  554. 4.4 Cylindrical 1D Geometry
  555. 4.5 Spherical 1D Geometry
  556. 4.6 Unstructured 2D Finite Geometry
  557. 5: The Discrete Ordinates Method
  558. 5.1 Quadrature Sets in the Method of Discrete Ordinates
  559. 5.2 The Difference Relations in 1D Slab Geometry
  560. 5.3 The Difference Relations in 1D Cylindrical Geometry
  561. 5.4 The Difference Relations in 1D Spherical Geometry
  562. 5.5 The Difference Relations in 2D Cartesian Geometry
  563. 5.6 Synthetic Acceleration
  564. 6: The Method of Characteristics
  565. 6.1 The MOC Integration Strategy
  566. 6.2 Unstructured 2D Finite Geometry
  567. 6.3 The Algebraic Collapsing Acceleration
  568. 7: The Steady-State Diffusion Equation
  569. 7.1 The Fick Law
  570. 7.2 Continuity and Boundary Conditions
  571. 7.3 The Finite Homogenous Reactor
  572. 7.3.1 Cartesian Coordinate System
  573. 7.3.2 Spherical Coordinate System
  574. 7.3.3 Cylindrical Coordinate System
  575. 7.4 The Heterogenous 1D Slab Reactor
  576. 7.4.1 Two-Region Example
  577. 8: Discretization of the Neutron Diffusion Equation
  578. 8.1 Mesh-Corner Finite Differences
  579. 8.2 Mesh-Centered Finite Differences
  580. 8.3 A Primal Variational Formulation
  581. 8.4 The Lagrangian Finite-Element Method
  582. 8.5 The Analytic Nodal Method in 2D Cartesian Geometry
  583. Appendix: Tracking of 1D and 2D Geometries
  584. 1: Tracking of 1D Cylindrical and Spherical Geometries
  585. 2: The Theory Behind sybt1d
  586. 3: Tracking of 2D Square Pincell Geometries
  587. 4: The Theory Behind sybt2d
  588. References
  589. 9: Lattice Physics Computations
  590. 1: Overview
  591. 1.1 Introduction
  592. 1.2 Brief History
  593. 1.3 Cross Section Library
  594. 1.4 Entering the Resonance Tables
  595. 1.4.1 Determining Microscopic Background Cross Sections
  596. Volume Component
  597. Surface Component
  598. 1.4.2 Resonance Interference Effects
  599. 1.5 Condensation Scheme
  600. 1.5.1 Pin-Cell Calculations
  601. 1.5.2 Coupling Calculation
  602. 1.6 Assembly Fine-Mesh Transport Calculation
  603. 1.6.1 The CCCP Method
  604. 1.6.2 The Method of Characteristics
  605. 1.7 Fundamental Mode Calculation
  606. 1.8 Gamma Transport Calculation
  607. 1.9 Power Distribution Calculation
  608. 1.10 Burnup Calculation
  609. 1.11 Edits
  610. 1.12 Summary
  611. 2: Cross Section Library
  612. 2.1 Objective
  613. 2.2 Choice of Energy Group Structure
  614. 2.2.1 WIMS 69: Groups
  615. 2.2.2 XMAS 172: Groups
  616. 2.2.3 SHEM 281: Groups
  617. 2.2.4 Other Energy Group Structures
  618. 2.3 Cross Sections Used in Lattice Physics Computations
  619. 2.4 Cross Section Processing
  620. 2.4.1 Generation of Multigroup Cross Section Data
  621. MODER
  622. RECONR
  623. BROARDR
  624. THERMR
  625. UNRESR
  626. GROUPR
  627. MATXSR
  628. OtherModules
  629. Some Notes on NJOY
  630. 2.4.2 Execution Control of NJOY
  631. 2.4.3 Post-Processing for Cross Section Library
  632. Absorption Cross Section
  633. Nu-Value and Fission Spectrum
  634. ScatteringMatrix
  635. Editing for Cross Section Library
  636. 2.5 Tabulation and Contents of Cross Section Library
  637. 2.5.1 General File Format
  638. 2.5.2 Nuclide Identifiers
  639. 2.5.3 Dependency of Cross Sections
  640. 2.5.4 General Data
  641. 2.5.5 One-Dimensional Data
  642. Elimination of Zero Elements
  643. Storage of Variations in Cross Sections
  644. Reduction of Grid Points for Temperature/Background Cross Sections
  645. 2.5.6 Two-Dimensional Data
  646. 2.5.7 Burnup-Related Data
  647. 2.5.8 Gamma Cross Section Library
  648. 2.6 Summary*6pt
  649. 3: Resonance Treatment
  650. 3.1 Objective
  651. 3.2 Effective Cross Sections
  652. 3.3 Physics of Self-Shielding and Major Resonance Calculations
  653. 3.3.1 Physics of Self-Shielding
  654. 3.3.2 Ultrafine Energy Group Calculation
  655. 3.3.3 Equivalence Theory
  656. 3.3.4 Subgroup Method
  657. 3.4 Resonance Self-Shielding in a Homogeneous System
  658. 3.4.1 Slowing Down of Neutrons in a Homogeneous System
  659. 3.4.2 Narrow Resonance Approximation
  660. 3.4.3 Wide Resonance Approximation
  661. 3.4.4 Intermediate Resonance Approximation
  662. 3.5 Resonance Self-Shielding in a Heterogeneous Systems
  663. 3.5.1 Neutron Slowing Down in a Heterogeneous Isolated System
  664. Reciprocity Theorem
  665. Estimation of Escape Probability and Average Chord Length
  666. Approximations of Neutron Spectrum in a Heterogeneous System
  667. 3.5.2 Equivalence Theory
  668. 3.5.3 Various Approximations for Escape Probability
  669. Incorporation of the Bell Factor
  670. N-Terms Rational Approximations
  671. Carlvik’s Two-TermRational Approximation
  672. Evaluation of the Effective Cross Section fromN-Term Rational Approximation
  673. Resonance Integral and Effective Cross Section
  674. 3.5.4 Neutron Slowing Down in a Heterogeneous Lattice System
  675. Formulation of Slowing Down Equation in Lattice System
  676. Dancoff Correction or Dancoff Factor
  677. Dancoff Correction and Collision Probability in the Moderator
  678. Dancoff Correction and Escape Probability for an Isolated Fuel Lump
  679. Equivalence Theory in Lattice System
  680. 3.5.5 Calculation of the Dancoff Factor and Background Cross Sections
  681. Calculation of Dancoff Factor Using the Collision Probability Method
  682. Neutron Current Method for Dancoff Correction Calculation
  683. Enhanced Neutron Current Method for Background Cross Section Evaluation
  684. 3.5.6 Stamm'ler's Method for a Heterogeneous Lattice System
  685. 3.5.7 Potential Limitations of the Equivalence Theory
  686. 3.6 Tabulation of Self-Shielding Factors
  687. 3.6.1 Cross Section Processing and Effective Cross Sections
  688. 3.6.2 Interpolation of Self-Shielding Factor Table
  689. 3.7 Ultrafine Group Method
  690. 3.7.1 Homogeneous System
  691. 3.7.2 Heterogeneous System
  692. 3.7.3 Limitations of the Ultrafine Energy Groups Method
  693. 3.8 Subgroup Method
  694. 3.8.1 General Concept
  695. 3.8.2 Direct Approach
  696. 3.8.3 Probability Table Approach
  697. 3.8.4 Fitting Method
  698. 3.8.5 Moment Method
  699. 3.8.6 Improvements in the Probability Table Approach
  700. 3.9 Other Methods
  701. 3.9.1 Tone's Method
  702. 3.9.2 The Stoker–Weiss Method and the Space-Dependent DancoffMethod (SDDM)
  703. The Stoker–Weiss Method
  704. Space-Dependent DancoffMethod (SDDM)
  705. 3.10 Resonance Overlap Effect
  706. 3.10.1 Overview
  707. 3.10.2 Resonance Interference Factor (RIF) Table
  708. 3.10.3 Utilization of an Ultrafine Energy Group Cross Section
  709. 3.11 Other Topics in Resonance Calculations
  710. 3.11.1 Effective Temperature Used in Resonance Calculation
  711. 3.11.2 Temperature Distribution in a Resonance Region
  712. 3.11.3 Treatment of Number Density Distribution in a Pellet
  713. 3.11.4 Resonance Calculation for Non-Heavy Nuclides
  714. 3.11.5 Verification and Validation of Resonance Calculation Model
  715. 3.12 Summary
  716. 4: Energy Condensation Scheme
  717. 4.1 Introduction
  718. 4.2 Pin-Cell Spectral Calculations
  719. 4.2.1 General Theory
  720. 4.2.2 The Method of Collision Probabilities in Slab Geometry
  721. 4.2.3 The Method of Collision Probabilities in Cylindrical Geometry
  722. 4.2.4 White Boundary Conditions
  723. 4.2.5 Buffer Zone
  724. 4.2.6 Numerics of the Pin-Cell Spectral Calculation
  725. 4.3 Coupling Calculation
  726. 4.3.1 The Method of Transmission Probabilities
  727. 4.3.2 Numerics of the Coupling Calculation
  728. 4.3.3 Solution to the Response Matrix Equations
  729. Inner Iterations
  730. Outer Iterations
  731. Fundamental Mode Rebalance
  732. 4.3.4 Geometry of the Coupling Calculation
  733. 4.4 Cross Section Condensation
  734. 4.5 Sundries
  735. 5: Fine-Mesh Assembly Calculation
  736. 5.1 Introduction
  737. 5.2 General Theory of the Method of Characteristics
  738. 5.2.1 Introduction
  739. 5.2.2 Solution to the Characteristics Form of the Transport Equation
  740. 5.3 Quadrature Sets
  741. 5.3.1 Introduction
  742. 5.3.2 Azimuthal Angles
  743. 5.3.3 Polar Angles
  744. 5.4 Geometry Routine
  745. 5.4.1 Introduction
  746. 5.4.2 Neutron Streaming and Symmetry in Slab Geometry
  747. 5.4.3 Ray Tracing in Slab Geometry
  748. 5.5 Solution to the Characteristics Equation
  749. 5.5.1 Introduction
  750. 5.5.2 Initialization of the Flux
  751. 5.5.3 Calculating the Source Term
  752. Scattering Source
  753. Fission Source
  754. External Source
  755. Total Source for a Non-Multiplying System
  756. Total Source for a Multiplying System
  757. 5.5.4 Boundary Conditions
  758. Periodic Boundary Conditions
  759. Reflective Boundary Conditions
  760. 5.5.5 Convergence
  761. Convergence of the Angular Flux
  762. Convergence of the Scalar Flux
  763. Convergence of the Multiplication Factor
  764. 5.5.6 Accelerating the Flux Convergence
  765. Energy Acceleration
  766. Spatial Acceleration
  767. 5.6 Cylindrical Geometry
  768. 5.6.1 Introduction
  769. 5.6.2 Choosing the Azimuthal Angles of Motion
  770. Even Angle Distribution
  771. Even Boundary Distribution
  772. 5.6.3 An Alternative Tracking Approach
  773. General Theory
  774. Example
  775. Track Adjustments
  776. 5.6.4 Modification to the Characteristics Equation
  777. 5.7 Two-Dimensional Geometry
  778. 5.8 Mesh Subdivisions for Two-Dimensional Problems
  779. 5.8.1 Assigning Material Regions
  780. 5.8.2 Meshing
  781. 5.8.3 Defining Various Cell Types
  782. 5.8.4 Meshing of Control Blade Cells
  783. 5.8.5 Final Mesh Layout
  784. 5.9 Two-Dimensional Ray Tracing
  785. 5.9.1 The Cyclic Tracking Approach
  786. 5.9.2 The Macro-Band Approach
  787. 5.10 Quadrature Sets for Two-Dimensional LWR Lattice Calculations
  788. 5.10.1 Quadratures for Modeling Polar Motion
  789. 5.10.2 Quadratures for Modeling Azimuthal Motion
  790. 5.11 Acceleration Schemes for Two-Dimensional Calculations
  791. 5.11.1 Coarse Mesh Rebalance
  792. 5.11.2 Coarse Mesh Finite Difference
  793. 5.12 Treating Very Thin Cylindrical Regions
  794. 5.13 Final Comments
  795. 6: Burnup Calculation
  796. 6.1 Objective
  797. 6.2 The Physics of Burnup and its Modeling
  798. 6.2.1 Phenomena during Burnup
  799. Depletion of Fissile Nuclides (a)
  800. Conversion fromFertile Nuclide to Fissile Nuclide (b)
  801. Production of Fission Products (c)
  802. Decay
  803. Transmutation of Nuclides due to Neutron Absorption
  804. 6.2.2 Burnup Chain
  805. Design and Setup of Burnup Chain
  806. Evaluation of Fission-Product Yield
  807. Estimation of Cross Sections and Yields for Pseudo Fission Products
  808. Branching Ratio
  809. 6.2.3 Burnup Equation
  810. Burnup of a Fissile Nuclide
  811. Burnup Equation with Multiple Nuclides
  812. Burnup Equation in General Form
  813. 6.2.4 Burnup, Burnup Time, and Normalization of Neutron Flux
  814. Burnup and Burnup Time
  815. Normalization of Neutron Flux
  816. 6.3 Numerical Scheme
  817. 6.3.1 Potential Causes of Error in a Numerical Solution
  818. Error in Reaction Rate (Production, Absorption, and Decay Rates)
  819. Temporal Discretization Error of the Differential Equation of Burnup Equation
  820. Temporal Discretization Error in Reaction Rates of Burnup Equation
  821. Normalization Error of Thermal Output
  822. Error in Initial Composition of Fuel
  823. 6.3.2 General Remarks on Numerical Solutions for the Burnup Equation
  824. 6.3.3 The Euler Method
  825. 6.3.4 The Runge–Kutta Method
  826. 6.3.5 The Matrix Exponential Method
  827. 6.3.6 The Matrix Decomposition Method
  828. 6.3.7 Bateman Method
  829. 6.3.8 The Padé Approximation
  830. 6.3.9 The Krylov Subspace Method
  831. 6.3.10 Numerical Example
  832. 6.3.11 Predictor–Corrector Method
  833. 6.3.12 Sub-Step Method
  834. Reduction of Temporal Discretization Error
  835. Power Normalization during Burnup Step
  836. 6.3.13 Cooling Calculation
  837. 135I.(Half-Life 6.7 h).135Xe
  838. 149Pm.(Half-Life 54: h).149Sm
  839. 239Np.(Half-Life 2.4 days).239Pu
  840. 148mPm.(Half-Life 41: days).148Sm
  841. 148Pm.(Half-Life 2.6 years).148Sm
  842. 155Eu.(Half-Life 4.7 years).155Gd
  843. 241Pu.(Half-Life 14.4 years).241Am
  844. 6.4 Burnup in Gadolinia-Bearing Fuel
  845. 6.4.1 Onion-Skin Effect
  846. 6.4.2 Asymmetry Effect in Gadolinium Depletion
  847. 6.4.3 Various Numerical Techniques for Gadolinium Depletion
  848. 6.5 Summary
  849. 7: Case Matrix
  850. 7.1 Introduction
  851. 7.2 Cross Section Dependencies in BWRs
  852. Historical Void
  853. Exposure
  854. Void Coefficient
  855. Fuel Temperature Coefficient
  856. Moderator Temperature Coefficient
  857. Control Blade Coefficient
  858. Control Blade History Coefficient
  859. Fuel Temperature History Coefficient
  860. Shutdown Cooling Coefficient
  861. 7.3 Cross Section Dependencies in PWRs
  862. Historical Moderator Temperature
  863. Historical Boron Concentration
  864. Moderator Temperature Coefficient
  865. Boron Coefficient
  866. 7.4 Summary
  867. 8: Edits
  868. 8.1 Nomenclature
  869. 8.2 Various Edits
  870. 8.3 Neutron Balance
  871. 9: Concluding Remarks
  872. References
  873. 10: Core Isotopic Depletion and Fuel Management
  874. 1: Burnup and Conversion
  875. 1.1 Introduction
  876. 1.2 The Bateman Equation
  877. 1.3 Solution of the Bateman Equation
  878. 1.4 Results of Burnup Calculations
  879. 1.5 The Breeding (Conversion) Ratio
  880. 1.6 Transmutation
  881. 1.7 Burnable Poisons
  882. 2: Transient Fission Products
  883. 2.1 Transient Fission Product Equations
  884. 2.2 Xenon Transient Phenomena and Control
  885. 2.2.1 Global Phenomena
  886. 2.2.2 Spatial Phenomena
  887. 3: Nuclear Fuel Management
  888. 3.1 Introduction
  889. 3.2 Out-of-Core Nuclear Fuel Management
  890. 3.3 LWR In-Core Nuclear Fuel Management
  891. 3.3.1 LWR Loading Pattern Selection
  892. 3.3.2 LWR Control Rod Programming Selection
  893. 3.3.3 LWR Lattice and Assembly Selection
  894. 3.4 Non-LWR In-Core Nuclear Fuel Management
  895. 3.4.1 Introduction
  896. 3.4.2 Heavy Water Reactors
  897. 3.4.3 Very High Temperature Gas-Cooled Reactors
  898. 3.4.4 Advanced Recycle Reactor
  899. 3.5 Applications of Mathematical Optimization in Nuclear FuelManagement
  900. 3.5.1 Introduction
  901. 3.5.2 Mathematical Optimization Approaches Utilized for Nuclear FuelManagement
  902. 3.5.3 Application of Mathematical Optimization to Out-of-Core Nuclear FuelManagement
  903. 3.5.4 Application of Mathematical Optimization to In-Core Nuclear FuelManagement
  904. 3.6 Computational Design Sequences
  905. 3.6.1 Design Calculations Needed
  906. 3.6.2 Cross-Section Generation
  907. 3.6.3 Core Simulation
  908. 4: Conclusions
  909. References
  910. 11: Radiation Shielding and Radiological Protection
  911. 1: Radiation Fields and Sources
  912. 1.1 Radiation Field Variables
  913. 1.1.1 Direction and Solid Angle Conventions
  914. 1.1.2 Radiation Fluence
  915. 1.1.3 Radiation Current or Net Flow
  916. 1.1.4 Directional Properties of the Radiation Field
  917. 1.1.5 Angular Properties of the Flow and Flow Rate
  918. 1.2 Characterization of Radiation Sources
  919. 1.2.1 General Considerations
  920. 1.2.2 Neutron Sources
  921. Fission Sources
  922. Photoneutrons
  923. Neutrons from (,n) Reactions
  924. Activation Neutrons
  925. Fusion Neutrons
  926. 1.2.3 Gamma-Ray Sources
  927. Radioactive Sources
  928. Prompt Fission Gamma Photons
  929. Gamma Photons from Fission Products
  930. Capture Gamma Photons
  931. Gamma Photons from Inelastic Neutron Scattering
  932. Activation Gamma Photons
  933. 1.2.4 X-Ray Sources
  934. Characteristic X Rays
  935. Bremsstrahlung
  936. X-Ray Machines
  937. 2: Conversion of Fluence to Dose
  938. 2.1 Local Dosimetric Quantities
  939. 2.1.1 Energy Imparted and Absorbed Dose
  940. 2.1.2 Kerma
  941. 2.1.3 Exposure
  942. 2.1.4 Local Dose Equivalent Quantities
  943. Relative Biological Effectiveness
  944. Linear Energy Transfer
  945. Radiation Weighting Factor and Dose Equivalent
  946. 2.2 Evaluation of Local Dose Conversion Coefficients
  947. 2.2.1 Photon Kerma, Absorbed Dose, and Exposure
  948. 2.2.2 Neutron Kerma and Absorbed Dose
  949. 2.3 Phantom-Related Dosimetric Quantities
  950. 2.3.1 Characterization of Ambient Radiation
  951. 2.3.2 Dose Conversion Factors for Geometric Phantoms
  952. Deep Dose Equivalent Index
  953. Shallow Dose Equivalent Index
  954. Ambient Dose Equivalent
  955. Directional Dose Equivalent
  956. Irradiation Geometries for Spherical Phantoms
  957. Slab and Cylinder Phantoms
  958. 2.3.3 Dose Coefficients for Anthropomorphic Phantoms
  959. Effective Dose Equivalent
  960. Effective Dose
  961. 2.3.4 Comparison of Dose Conversion Coefficients
  962. 3: Basic Methods in Radiation Attenuation Calculations
  963. 3.1 The Point-Kernel Concept
  964. 3.1.1 Exponential Attenuation
  965. 3.1.2 Uncollided Dose from a Monoenergetic Point Source
  966. Point Source in a Vacuum
  967. Point Source in a Homogenous Attenuating Medium
  968. Point Source with a Shield
  969. 3.2 Uncollided Doses for Distributed Sources
  970. 3.2.1 The Superposition Procedure
  971. 3.2.2 Example Calculations for Distributed Sources
  972. The Line Source
  973. 4: Photon Attenuation Calculations
  974. 4.1 The Photon Buildup-Factor Concept
  975. 4.2 Isotropic, Monoenergetic Sources in Infinite Media
  976. 4.3 Buildup Factors for Point and Plane Sources
  977. 4.3.1 Empirical Approximations for Buildup Factors
  978. The Geometric Progression Approximation
  979. 4.3.2 Point-Kernel Applications of Buildup Factors
  980. Line Source in an Infinite Attenuating Medium
  981. 4.4 Buildup Factors for Heterogenous Media
  982. 4.4.1 Boundary Effects in Finite Media
  983. 4.4.2 Treatment of Stratified Media
  984. 4.5 Broad-Beam Attenuation of Photons
  985. 4.5.1 Attenuation Factors for Photon Beams
  986. 4.5.2 Attenuation of Oblique Beams of Photons
  987. 4.5.3 Attenuation Factors for X-Ray Beams
  988. 4.5.4 The Half-Value Thickness
  989. 4.6 Shield Heterogeneities
  990. 4.6.1 Limiting Case for Small Discontinuities
  991. 4.6.2 Small Randomly Distributed Discontinuities
  992. 5: Neutron Shielding
  993. 5.1 Neutron Versus Photon Calculations
  994. 5.2 Fission Neutron Attenuation by Hydrogen
  995. 5.3 Removal Cross Sections
  996. 5.4 Extensions of the Removal Cross Section Model
  997. 5.4.1 Effect of Hydrogen Following a Nonhydrogen Shield
  998. 5.4.2 Homogenous Shields
  999. 5.4.3 Energy-Dependent Removal Cross Sections
  1000. 5.5 Fast-Neutron Attenuation Without Hydrogen
  1001. 5.6 Intermediate and Thermal Fluences
  1002. 5.6.1 Diffusion Theory for Thermal Neutron Calculations
  1003. 5.6.2 Fermi Age Treatment for Thermal and Intermediate-Energy Neutrons
  1004. 5.6.3 Removal-Diffusion Techniques
  1005. Original Spinney Method
  1006. Improved Removal-Diffusion Methods
  1007. 5.7 Capture-Gamma-Photon Attenuation
  1008. 5.8 Neutron Shielding with Concrete
  1009. 5.8.1 Concrete Slab Shields
  1010. Effect of Water Content
  1011. Effect of Slant Incidence
  1012. Effect of the Aggregate
  1013. Effect of the Fluence-to-Dose Conversion Factor
  1014. 6: The Albedo Method
  1015. 6.1 Differential Number Albedo
  1016. 6.2 Integrals of Albedo Functions
  1017. 6.3 Application of the Albedo Method
  1018. 6.4 Albedo Approximations
  1019. 6.4.1 Photon Albedos
  1020. 6.4.2 Neutron Albedos
  1021. Secondary-Photon Albedos
  1022. 7: Skyshine
  1023. 7.1 Approximations for the LBRF
  1024. 7.1.1 Photon LBRF Approximation
  1025. 7.1.2 Neutron LBRF Approximation
  1026. 7.2 Open Silo Example
  1027. 7.3 Shielded Skyshine Sources
  1028. 7.4 Computational Resources for Skyshine Analyses
  1029. 8: Radiation Streaming Through Ducts
  1030. 8.1 Characterization of Incident Radiation
  1031. 8.2 Line-of-Sight Component for Straight Ducts
  1032. 8.2.1 Line-of-Sight Component for the Cylindrical Duct
  1033. 8.2.2 Line-of-Sight Component for the Rectangular Duct
  1034. 8.3 Wall-Penetration Component for Straight Ducts
  1035. 8.4 Single-Scatter Wall-Reflection Component
  1036. 8.5 Photons in Two-Legged Rectangular Ducts
  1037. 8.6 Neutron Streaming in Straight Ducts
  1038. Single-Wall Scattering
  1039. Multiple-Wall Scattering
  1040. 8.7 Neutron Streaming in Ducts with Bends
  1041. 8.7.1 Two-Legged Ducts
  1042. Neutron Streaming in a Two-Legged Cylindrical Duct
  1043. Neutron Streaming in a Two-Legged Rectangular Duct
  1044. 8.7.2 Neutron Streaming in Ducts with Multiple Bends
  1045. 8.8 Empirical and Experimental Results
  1046. 9: Shield Design
  1047. 9.1 Shielding Design and Optimization
  1048. 9.2 Shielding Materials
  1049. 9.2.1 Natural Materials
  1050. 9.2.2 Concrete
  1051. 9.2.3 Metallic Shielding Materials
  1052. 9.2.4 Special Materials for Neutron Shielding
  1053. Boron for Neutron Attenuation
  1054. Lithium for Neutron Attenuation
  1055. 9.2.5 Materials for Diagnostic X-Ray Facilities
  1056. 9.3 A Review of Software Resources
  1057. 9.4 Shielding Standards
  1058. 10: Health Physics
  1059. 10.1 Deterministic Effects from Large Acute Doses
  1060. 10.1.1 Effects on Individual Cells
  1061. 10.1.2 Deterministic Effects in Organs and Tissues
  1062. 10.1.3 Potentially Lethal Exposure to Low-LET Radiation
  1063. 10.2 Hereditary Illness
  1064. 10.2.1 Classification of Genetic Effects
  1065. 10.2.2 Estimates of Hereditary Illness Risks
  1066. 10.3 Cancer Risks from Radiation Exposures
  1067. 10.3.1 Estimating Radiogenic Cancer Risks
  1068. 10.4 The Dose and Dose-Rate Effectiveness Factor
  1069. 10.4.1 Dose–Response Models for Cancer
  1070. 10.4.2 Average Cancer Risks for Exposed Populations
  1071. 10.5 Radiation Protection Standards
  1072. 10.5.1 Risk-Related Dose Limits
  1073. 10.5.2 The 1987: NCRP Exposure Limits
  1074. Acknowledgments
  1075. References
  1076. 12: High Performance Computing in Nuclear Engineering
  1077. 1: Introduction
  1078. 2: Main Computer and Processor Architectures
  1079. 2.1 Main Architecture Classes for High Performance Computing
  1080. 2.2 SIMD Architectures
  1081. 2.3 MIMD Architectures
  1082. 2.4 Dataflow and Systolic Architectures: Specialized ArchitecturesVersus Generic Ones
  1083. 2.5 Vector Architectures
  1084. 3: Parallelism Models
  1085. 3.1 Overview
  1086. 3.2 Shared Memory Model
  1087. 3.3 Threads Model
  1088. 3.4 Message Passing Model
  1089. 3.5 Data Parallel Model
  1090. 3.6 Other Models
  1091. 3.6.1 Hybrid
  1092. 3.6.2 Single Program Multiple Data (SPMD)
  1093. 3.6.3 Multiple Program Multiple Data (MPMD)
  1094. 3.7 The Different Levels of Parallelism
  1095. 3.7.1 First Level: Distributed Computing
  1096. 3.7.2 Second Level: Coarse Grain Parallel Computing
  1097. 3.7.3 Third Level: Fine Grain Parallel Computing
  1098. 4: Designing Parallel Programs
  1099. 4.1 Automatic Versus Manual Parallelization
  1100. 4.2 Understand the Problem and the Program
  1101. 4.3 Partitioning
  1102. 4.3.1 Domain Decomposition
  1103. 4.3.2 Functional Decomposition
  1104. EcosystemModeling
  1105. Signal Processing
  1106. Climate Modeling
  1107. 4.4 Communications
  1108. 4.4.1 Who Needs Communications?
  1109. You Do Not Need Communications
  1110. You Do Need Communications
  1111. 4.4.2 Factors to Consider
  1112. Cost of Communications
  1113. Latency Versus Bandwidth
  1114. Visibility of Communications
  1115. Synchronous Versus Asynchronous Communications
  1116. Scope of Communications
  1117. Efficiency of Communications
  1118. 4.5 Synchronization
  1119. 4.5.1 Types of Synchronization
  1120. Barrier
  1121. Lock/Semaphore
  1122. Synchronous Communication Operations
  1123. 4.6 Data Dependencies
  1124. 4.6.1 Definition
  1125. 4.6.2 Examples
  1126. 4.6.3 How to Handle Data Dependencies
  1127. 4.7 Load Balancing
  1128. 4.7.1 How to Achieve Load Balance
  1129. Equally Partition theWork Each Task Receives
  1130. Use Dynamic Work Assignment
  1131. 4.8 Granularity
  1132. 4.8.1 Computation/Communication Ratio
  1133. 4.8.2 Fine Grain Parallelism
  1134. 4.9 Limits and Costs of Parallel Programming
  1135. 4.9.1 Amdahl's Law
  1136. 4.9.2 Complexity
  1137. 4.9.3 Portability
  1138. 4.9.4 Resource Requirements
  1139. 4.9.5 Scalability
  1140. 5: Use of HPC for Nuclear Energy Application: Overview
  1141. 5.1 The Virtual Power Plant Challenge
  1142. 5.1.1 Description
  1143. 5.1.2 Motivation
  1144. 5.1.3 Main Challenges
  1145. 5.2 Other Examples and Use
  1146. 6: Illustration of HPC Use on Different Applications
  1147. 6.1 HPC for Reactor Core Simulation
  1148. 6.1.1 Introduction
  1149. 6.1.2 Major Challenges
  1150. 6.1.3 HPC in Monte Carlo Simulations
  1151. Principles for a Parallel Implementation
  1152. Performances
  1153. Future Challenges
  1154. 6.1.4 HPC in Deterministic Simulations
  1155. The Different Level of Parallelism
  1156. First Level: Multiparameterized Calculations
  1157. Second Level: Multi-Domain Calculations
  1158. Third Level: Fine Grain Parallelism Model
  1159. 6.2 HPC for CFD and DNS
  1160. 6.2.1 Main Industrial Issues
  1161. 6.2.2 The Multi-Scale Approach
  1162. 6.2.3 HPC for DNS
  1163. 6.2.4 HPC for LES
  1164. 6.2.5 Other Fields
  1165. 6.3 High Performance Computing for Materials Science
  1166. 6.3.1 Introduction
  1167. 6.3.2 Theoretical and Computational Methods
  1168. 6.3.3 Models and Simulations of Nuclear Fuels and Structural Materials
  1169. 6.3.4 Fuel Performance Codes
  1170. 6.3.5 Conclusions
  1171. 7: Conclusion and Open Issues
  1172. References
  1173. Volume III: Reactor Analysis
  1174. 13: Analysis of Reactor Fuel Rod Behavior
  1175. 1: Introduction
  1176. 2: The LWR Fuel Element: A General Outline
  1177. 2.1 The Fuel Pellet
  1178. 2.2 The Fuel Rod
  1179. 2.3 The Fuel Element
  1180. 3: Properties of Oxide Nuclear Fuel
  1181. 3.1 Structure and Thermal Expansion
  1182. 3.2 Thermal Conductivity
  1183. 3.2.1 UO2
  1184. 3.2.2 Mixed Oxides
  1185. 3.2.3 Effects of Irradiation
  1186. 3.3 Heat Capacity
  1187. 3.4 Melting Temperature
  1188. 4: Properties of Cladding Materials for LWRs Fuel
  1189. 4.1 Composition
  1190. 4.2 Microstructure
  1191. 4.3 Thermal Properties
  1192. 4.3.1 Linear Thermal Expansion
  1193. 4.3.2 Thermal Conductivity
  1194. 4.3.3 Specific Heat Capacity
  1195. 4.3.4 Emissivity
  1196. 4.4 Mechanical Properties
  1197. 4.4.1 Elastic Constants
  1198. 4.4.2 Plastic Deformation
  1199. 4.5 Irradiation Effects
  1200. 4.5.1 Irradiation-Induced Growth
  1201. 4.5.2 Irradiation-Induced Hardening
  1202. 4.5.3 Irradiation-Induced Creep
  1203. 4.5.4 Corrosion and Hydrogen Pickup
  1204. 4.6 High-Temperature Effects
  1205. 4.6.1 High-Temperature Corrosion
  1206. 4.6.2 High-Temperature Deformation
  1207. 5: Basic Phenomena for In-Reactor Performance
  1208. 5.1 Neutronic Aspects of Nuclear Fuel Rods
  1209. 5.1.1 Nuclide Evolution in Nuclear Fuel
  1210. 5.1.2 The Basic Equations
  1211. 5.1.3 Burnable Absorbers
  1212. 5.2 Heat Transfer and Thermal Characteristics
  1213. 5.2.1 Axial Heat Transport in the Coolant
  1214. 5.2.2 Heat Transport through the Cladding
  1215. 5.2.3 Heat Transport from the Cladding to the Fuel Pellet
  1216. 5.2.4 Effects of Irradiation on Gap Conductance
  1217. 5.2.5 Heat Transport in the Fuel Pellet
  1218. 5.3 Mechanical Behavior
  1219. 5.3.1 Main Assumptions and Equations
  1220. 5.3.2 Calculation of Strains
  1221. Elastic Strain
  1222. Nonelastic Strain
  1223. 5.3.3 Boundary Conditions
  1224. Radial Boundary Conditions
  1225. Axial Boundary Conditions
  1226. 5.4 Fission Gas Behavior
  1227. 5.4.1 Basic Mechanisms
  1228. Recoil, Knockout and Sputtering
  1229. Lattice Diffusion of Single Gas Atoms
  1230. Trapping
  1231. Irradiation-Induced Resolution
  1232. Grain Boundary Diffusion
  1233. Grain Boundary Sweeping or Grain Growth
  1234. Bubble Migration
  1235. Bubble Interconnection
  1236. 5.4.2 Modeling the Fission Gas Behavior
  1237. Intragranular Behavior
  1238. Intergranular Behavior
  1239. Coupling Intra and Intergranular Behavior
  1240. Swelling
  1241. 6: Typical Phenomena and Issues in the Design and Licensingof LWR Fuels
  1242. 6.1 High Burnup Structure
  1243. 6.1.1 Characteristics of the High Burnup Structure
  1244. 6.1.2 Importance of the High Burnup Structure
  1245. 6.1.3 Modeling of the High Burnup Structure
  1246. 6.2 Pellet-Cladding Interaction
  1247. 6.2.1 Pellet-Cladding Mechanical Interaction
  1248. 6.2.2 Irradiation–Induced Stress Corrosion Cracking
  1249. Sufficient Stress
  1250. Sufficient Time
  1251. Susceptible Material
  1252. Proper Chemical Environment
  1253. Mitigating PCI
  1254. Modeling PCI
  1255. 6.2.3 Outside-In Cracking Caused by Power Ramps
  1256. 6.3 Pellet-Coolant Interaction
  1257. 6.4 Loss-of-Coolant Accidents
  1258. 6.4.1 Sequence of Events during a LOCA
  1259. 6.4.2 Main Characteristics of a LOCA Failure
  1260. 6.4.3 Current LOCA Safety Criteria
  1261. LOCA Criterion Based on Zero-Ductility
  1262. LOCA Criterion Based on Integral Quench Tests
  1263. 6.4.4 Extension to High Burnup Fuel
  1264. Zero-Ductility Limit at High Burnup
  1265. LOCA High Burnup Limit from Integral Quench Tests
  1266. 6.5 Reactivity-Initiated Accidents
  1267. 6.5.1 Sequence of Events during a RIA
  1268. 6.5.2 Main Characteristics of RIA Failures
  1269. 6.5.3 RIA Safety Criteria
  1270. 7: Uncertainty Analysis
  1271. 8: Outlook
  1272. Acknowledgment
  1273. References
  1274. 14: Noise Techniques in Nuclear Systems
  1275. 1: Introduction
  1276. 2: Zero Power Reactor Noise
  1277. 2.1 Methodology of Zero Power Neutron Noise
  1278. 2.1.1 Forward Approach
  1279. 2.1.2 Backward Approach
  1280. 2.2 Reactivity Measurements in Traditional Systems with StationaryPoisson Sources
  1281. 2.2.1 The Feynman-Alpha (Variance to Mean) Method
  1282. 2.2.2 The Rossi-Alpha (Correlation) Method
  1283. 2.2.3 The Bennett Variance Method
  1284. 2.2.4 Mogilner's Zero Crossing Method
  1285. 2.2.5 The Cf-252: Method
  1286. 2.3 Reactivity Measurements in ADS
  1287. 2.3.1 Spallation Source
  1288. 2.3.2 Pulsed Source in Feynman- and Rossi-Alpha Applications
  1289. 2.3.3 Feynman-Alpha with Deterministic Pulsing
  1290. 2.3.4 Feynman-Alpha with Stochastic Pulsing
  1291. 2.3.5 Rossi-Alpha with Stochastic Pulsing
  1292. 2.4 Pulse Counting Techniques in Nuclear MaterialManagement (Safeguards)
  1293. 2.4.1 Neutron Factorial Moments
  1294. 2.4.2 Gamma Photon Factorial Moments
  1295. 2.4.3 Mixed Moments
  1296. 2.4.4 Multiplicity Detection Rates
  1297. 3: Power Reactor Noise Theory
  1298. 3.1 Basic Principles
  1299. 3.2 Space-Time Dependent Reactor Kinetics in Diffusion Theory
  1300. 3.2.1 Static Equations
  1301. One-GroupTheory
  1302. Two-GroupTheory
  1303. 3.2.2 Time-Dependent One-Group Diffusion Equations
  1304. 3.2.3 The Flux Factorization and the Kinetic Approximations
  1305. The Point Reactor Approximation
  1306. The Adiabatic Approximation
  1307. 3.3 Small Space-Time Dependent Fluctuations: Power Reactor Noise
  1308. 3.3.1 Neutron Noise in One-Group Diffusion Theory
  1309. 3.3.2 The Factorization of the Neutron Noise
  1310. Determination of the Fluctuations of the Amplitude Factor
  1311. Determination of the Fluctuations of the Shape Function
  1312. Full Solution in One-Group Diffusion Theory
  1313. 3.3.3 Neutron Noise in Two-Group Diffusion Theory: The Local Component
  1314. Direct Approach: the Green’s Function Matrix
  1315. Adjoint Approach: The Dynamic Adjoint Function
  1316. 4: Applications of Power Reactor Noise Diagnostics
  1317. 4.1 Unfolding Noise Source Parameters with Noise Diagnostics
  1318. 4.1.1 Localization of Absorbers of Variable Strength
  1319. 4.1.2 Localization of Vibrating Control Rods
  1320. 4.1.3 Flow Velocity Estimations
  1321. Flow Velocity Estimations in BWRs fromthe Neutron Noise
  1322. Flow velocity Estimations in PWRs from Temperature and Neutron Noise
  1323. 4.1.4 Miscellaneous Other Applications
  1324. Diagnostics of Core-Barrel Vibrations in PWRs
  1325. Detection of Impacting Detector Strings in BWRs
  1326. 5: Special Noise Techniques: Determination of Core GlobalDynamical Parameters
  1327. 5.1 Determination of the Decay Ratio in BWRs
  1328. 5.1.1 Stability Indicator
  1329. 5.1.2 Stability Mechanism of a BWR
  1330. 5.1.3 Types of BWR Instabilities
  1331. 5.1.4 Combined Types of Oscillations
  1332. 5.2 Determination of the Moderator Temperature Coefficient ofReactivity in PWRs
  1333. 5.2.1 Definition of the MTC
  1334. 5.2.2 Derivation of the MTC Noise Estimate
  1335. 5.2.3 Measurement by Noise Analysis Technique
  1336. 5.2.4 Elaboration of a Correct MTC Noise Estimator
  1337. 6: Conclusions and Open Issues
  1338. Acknowledgments
  1339. References
  1340. 15: Deterministic and Probabilistic Safety Analysis
  1341. 1: Origin and Methodological Framework of DeterministicSafety Analysis
  1342. 1.1 Origin of Nuclear Power Safety and Regulation
  1343. 1.1.1 First Implementation of Nuclear Safety in the USA
  1344. 1.1.2 Reactor Design Safety by Du Pont Engineers
  1345. 1.1.3 US Atomic Energy Commission
  1346. 1.1.4 International Atomic Energy Agency (IAEA)
  1347. 1.2 Evolution of Methods for Safety Assurance
  1348. 1.3 Defense-in-Depth
  1349. 1.4 Design Basis Accidents
  1350. 1.5 Single Failure Criterion
  1351. 1.6 Accident Types
  1352. 1.6.1 Loss of Coolant Accidents
  1353. 1.6.2 Transient Events
  1354. 1.7 General Design Criteria
  1355. 1.7.1 Quality Control Criterion
  1356. 1.7.2 Design Bases for Protection against Natural Phenomena
  1357. 1.7.3 Fire Protection
  1358. 1.7.4 Environmental and Dynamic Effects Design Bases
  1359. 1.7.5 Sharing of SSCs
  1360. 1.7.6 Proven Engineering Practices
  1361. 1.7.7 Quality Assurance
  1362. 1.7.8 Self-Assessment
  1363. 1.7.9 Peer Reviews
  1364. 1.7.10 Human Factors
  1365. 1.7.11 Safety Assessment and Verification
  1366. 1.7.12 Radiation Protection
  1367. 1.7.13 Operating Experience and Safety Research
  1368. 1.7.14 Defense against Severe Accidents
  1369. 1.8 Requirements and Standards for Nuclear Safety
  1370. 1.8.1 American National Standard Nuclear Safety Criteria
  1371. 1.9 US Regulatory Requirements for Deterministic Safety Analyses
  1372. 1.10 Safety Features for Future Nuclear Plants
  1373. 2: Evolution of Probabilistic Safety Assessment and Applications
  1374. 2.1 Safety Issues in Nuclear and Aerospace Industries
  1375. 2.1.1 Safety Issues in Nuclear Industry
  1376. 2.1.2 Safety Issues in Aerospace Industry
  1377. 2.2 Reactor Safety Study (WASH-1400)
  1378. 2.2.1 Motivation – ECCS Issue and Loss of Fluid Tests
  1379. 2.2.2 RSS Staff
  1380. 2.2.3 Fault Trees and Event Trees
  1381. 2.2.4 Initiating Events
  1382. 2.2.5 Failure Data
  1383. 2.2.6 Uncertainty Analysis
  1384. 2.2.7 Sensitivity Analysis
  1385. 2.2.8 Consequence Analysis
  1386. 2.2.9 Release Categories
  1387. 2.2.10 Comparison with Other Risks
  1388. 2.2.11 RSS Results
  1389. 2.2.12 APS Review
  1390. 2.3 Post-RSS Review and the Three Mile Island Accident
  1391. 2.4 Post-TMI Accident and Revival of the Use of PSA
  1392. 2.5 Safety Goals
  1393. 2.6 NUREG-1150 Studies
  1394. 2.7 IPE and IPEEE
  1395. 2.8 NRC'S PRA Policy Statement
  1396. 2.9 EPRI's PSA Applications Guide
  1397. 2.10 Guidelines for Risk-Informed Regulation
  1398. 2.11 Reactor Oversight Process
  1399. 2.12 Maintenance Rule
  1400. 2.13 Risk-Informed Improvement to Technical Specifications
  1401. 2.14 Risk-Informed Licensing Structure for Design Safety
  1402. 3: Probabilistic Safety Assessment
  1403. 3.1 Strength of PSA
  1404. 3.2 Steps in Conducting a Probabilistic Safety Assessment
  1405. 3.2.1 Objectives and Methodology
  1406. 3.2.2 Familiarization and Information Assembly
  1407. 3.2.3 Identification of Initiating Events
  1408. 3.2.4 Sequence or Scenario Development
  1409. 3.2.5 Logic Modeling
  1410. 3.2.6 Failure Data Collection, Analysis and Performance Assessment
  1411. 3.2.7 Quantification and Integration
  1412. 3.2.8 Uncertainty Analysis
  1413. 3.2.9 Sensitivity Analysis
  1414. 3.2.10 Risk Ranking and Importance Analysis
  1415. 3.2.11 Interpretation of Results
  1416. 3.3 A Simple Example of PSA
  1417. Identification of Initiating Events
  1418. Scenario Development
  1419. Logic Modeling
  1420. Failure Data Analysis
  1421. Quantification
  1422. 3.4 Future Outlook of Safety Analysis and Research Needs
  1423. References
  1424. 16: Multiphase Flows: Compressible Multi-Hydrodynamics
  1425. 1: Introduction and Scope I
  1426. 2: Basics of Coarse-Graining
  1427. 2.1 The Two-Fluid Model
  1428. 2.2 The Kinetic Theory Model
  1429. 2.3 The Hybrid (Symmetry-Breaking) Model
  1430. 3: A General Formulation
  1431. 4: Non-Dissipative Model
  1432. 4.1 Rigid Particles
  1433. 4.1.1 Rigid Particles, No Velocity Fluctuations
  1434. 4.1.2 Rigid Particles with Added-Mass Velocity Fluctuations
  1435. 4.2 Compressible Particles
  1436. 5: Dissipative Model
  1437. 5.1 Noncompressible Particles: Solid Grains or Drops
  1438. 5.1.1 The Dissipation Rate
  1439. 5.1.2 The Constitutive Laws
  1440. 5.2 Compressible Particles: Bubbles
  1441. 5.2.1 The Dissipation Rate
  1442. 5.2.2 The Constitutive Laws
  1443. 5.3 Final Form of the Model*-20pt
  1444. 6: Summary of Key Results
  1445. 6.1 Hybrid Approach for Dispersed Mixtures
  1446. 6.2 Supplementary Equations
  1447. 6.2.1 Pseudo-Turbulent Kinetic Energies
  1448. 6.2.2 Volume Fraction Transport
  1449. 6.2.3 Interfacial Energy Transport
  1450. 6.2.4 Particle Deformation and Dynamics of Interfaces
  1451. 6.3 Hyperbolicity
  1452. 6.4 Nuclear Reactor (Design) Systems Codes
  1453. Acknowledgments
  1454. A: Rigid Spheres in a Nonviscous Fluid
  1455. B: Hyperbolicity Aspects of the Effective Field Model
  1456. C: Including Surface Tension
  1457. PART II: COMPUTATION WITH EFFECTIVE-FIELD MODELS OFMULTIPHASE FLOWS
  1458. 7: Introduction and Scope II
  1459. 8: Strategy for Computing Compressible Multi-Hydrodynamics
  1460. 9: Basics: The Riemann Problem and the Godunov Method
  1461. 9.1 The Riemann Problem
  1462. 9.2 The Godunov Method
  1463. 10: Approximate Flux ``Splitting'' Schemes for Single Phase Flows
  1464. 10.1 Characteristics-Based Flux Splitting
  1465. 10.2 Direct Flux Splitting
  1466. Remarks on Performance
  1467. 10.3 Advection Upstream Splitting
  1468. Remarks on Performance
  1469. 11: Advection Upstream Splitting for the Effective Field Model
  1470. 11.1 Recasting the System of Equations in Quasi-Conservative Form
  1471. 11.2 Numerical Discretization
  1472. 11.3 Time Integration
  1473. 12: Numerical Testing in the ARMS Code
  1474. 12.1 Uniformly Translating Body-and-Fluid System
  1475. 12.2 The Faucet Problem
  1476. 12.3 Fitt's Problem
  1477. 12.4 Shock Tube Problems
  1478. 12.5 Particle Cloud Dynamics in Gaseous Shocks
  1479. 13: Conclusions and Outlook
  1480. D: Sample Computational Results
  1481. Acknowledgment
  1482. References
  1483. Part I
  1484. Part II
  1485. 17: Sensitivity and Uncertainty Analysis, Data Assimilation
  1486. 1: Introduction
  1487. 2: Measurement Uncertainties
  1488. 2.1 Basic Concepts
  1489. 2.2 Classification of Measurement Errors
  1490. 2.3 Probabilities and Relative Frequencies: Random and Systematic Errors
  1491. 2.4 Direct Measurements
  1492. 2.5 Indirect Measurements: Propagation of Errors
  1493. 2.6 Glossary
  1494. 3: Statistical Methods for Sensitivity and Uncertainty Analysis
  1495. 3.1 Reliability Algorithms: FORM and SORM
  1496. 3.2 Design of Experiments and Screening Design Methods
  1497. 3.3 Sampling-Based Methods
  1498. 3.4 Variance-Based Methods
  1499. 4: Deterministic Computation of Response Sensitivities to ParametersUsing Adjoint Operators
  1500. 4.1 Introduction
  1501. 4.2 Sensitivity Analysis of Nonlinear and Linear Systems with Feedbackand Operator-Type Responses
  1502. 4.2.1 The Forward Sensitivity Analysis Procedure (FSAP)
  1503. 4.2.2 Adjoint (Local) Sensitivity Analysis Procedure (ASAP)
  1504. 4.3 Sensitivity Analysis of Augmented Systems with Feedback
  1505. 4.3.1 The Forward Sensitivity Analysis Procedure (FSAP)
  1506. 4.3.2 The Adjoint Sensitivity Analysis Procedure (ASAP)
  1507. 4.4 Illustrative Application of ASAP: Adjoint Sensitivity Analysis ofMarkov Dynamic Reliability Models
  1508. 4.5 Global Optimization and Sensitivity Analysis
  1509. 4.5.1 Critical Points and Global Optimization
  1510. 4.5.2 Sensitivity Analysis
  1511. 4.5.3 Global Computation of Fixed Points
  1512. 5: Probability Theory and Uncertainty Information
  1513. 5.1 Assigning Priors under Incomplete Knowledge: Group Theory andEntropy Maximization
  1514. 5.2 Recommending Nominal Values and Uncertainties: Decision Theory
  1515. 6: Model Calibration Through Data Assimilation for Best-EstimatePredictions
  1516. 6.1 Introduction
  1517. 6.2 Mathematical Formalism
  1518. 6.3 Data Consistency and Rejection Criteria
  1519. 6.4 Illustrative Application to Model Calibration for a BenchmarkBlowdown Experiment
  1520. 7: Model Validation and Calibration: Concluding Remarks andOpen Issues
  1521. References
  1522. 18: Reactor Physics Experiments on Zero Power Reactors
  1523. 1: The Contribution of CEA Critical Mock-Ups in Nuclear ReactorSimulation
  1524. 2: Description of the EOLE Mock-Up
  1525. 3: Experimental Programs on the EOLE Mock-Up
  1526. 3.1 The EPICURE Program
  1527. 3.2 The MISTRAL Program
  1528. 3.3 The BASALA Program
  1529. 3.4 The ADAPh Program
  1530. 3.5 The FUBILA Program
  1531. 3.6 The FLUOLE Program
  1532. 3.6.1 Reason for the Program
  1533. 3.6.2 Characteristics of the FLUOLE Program
  1534. 3.7 The PERLE Program
  1535. 3.7.1 Reason for the Program
  1536. 3.7.2 PERLE Program Characteristics
  1537. The Homogeneous Configuration
  1538. Configuration with “EPR Type Reflector”
  1539. 3.8 The AMMON Program and the Jules Horowitz Reactor
  1540. 3.9 MOX Powder Criticality Requirements
  1541. 3.10 Criticality at Loading
  1542. 3.11 Plutonium and High Combustion Rate Control. EPR Support
  1543. 3.12 Support Program for CELESTIN Reactors
  1544. 3.13 An Experimental Platform
  1545. 3.14 Support for Generation IV Reactor Concepts
  1546. 3.15 Conclusions
  1547. 4: Description of the MINERVE Reactor
  1548. 4.1 General Description
  1549. 4.1.1 The Cavity
  1550. 4.1.2 Driver Zone Fuel Elements
  1551. 4.1.3 The External Reflector
  1552. 4.1.4 The Central Cavity
  1553. 4.1.5 Control-Command
  1554. 4.2 Advantages of the MINERVE Reactor
  1555. 4.3 Coupled Assemblies
  1556. 4.3.1 MELODIE Assembly Representative of Pressurized Water Lattices
  1557. General Description
  1558. R1-UO2: Lattice Representative of a UO2-PWR Spectrum
  1559. R1-MOX Lattice Representative of a MOX-PWR Spectrum
  1560. R2-UO2: Lattice Representative of a Dissolver Spectrum
  1561. BWR Lattice
  1562. 4.3.2 MORGANE Assembly for Lattices Representative of Under-ModeratedReactors (RSM)
  1563. General Description
  1564. MORGANE-R Lattice
  1565. MORGANE-S Lattice
  1566. 4.3.3 ERMINE Assembly for Fast Neutron Multiplier Lattices
  1567. 4.3.4 ELOISE Assembly for Heavy Water Moderated Lattices
  1568. 5: Experimental Programs in the MINERVE Reactor
  1569. 5.1 Main Programs Achieved Between 1959: and 1990
  1570. 5.2 The CREDIT BURN UP Program (From 1993: to 2001)
  1571. 5.3 The CERES Program (From 1992: to 1995)
  1572. 5.4 The High Burn-Up (HTC) Program (From 2003: to 2004)
  1573. 5.5 The VALMONT Program (2003–2004)
  1574. 5.6 The ADAPh Program (2005)
  1575. 5.7 The OSMOSE Program
  1576. 5.8 The OCEAN Program
  1577. 5.9 Training Activities
  1578. 5.9.1 EDF Training
  1579. 5.9.2 INSTN Training
  1580. 5.9.3 Other Training
  1581. 5.10 The Gas Fast Reactor (GFR) Program
  1582. 5.11 The HTR Program
  1583. 5.12 HTC Program Supplement
  1584. 5.13 Program on Structure Materials and Moderators
  1585. 5.14 FP and Absorber Supplementary Program
  1586. 5.15 Program in Support of JHR for Qualification of HORUS3D for U3Si2
  1587. 5.16 Cadmium Measurements
  1588. 5.17 Other Programs
  1589. 5.18 Conclusion
  1590. 6: Description of the MASURCA Reactor
  1591. 6.1 Core Building Principles
  1592. 6.2 Simulation Materials
  1593. 7: Experimental Programs in MASURCA
  1594. 7.1 The RZ and PLUTO Programs (1969–1975)
  1595. 7.2 The PECORE Program (1975)
  1596. 7.3 The PRE RACINE and RACINE Programs (1976–1984)
  1597. 7.4 The BALZAC Program (1985–1988)
  1598. 7.5 The CONRAD Program (1989–1992)
  1599. 7.6 The BERENICE Program (1993)
  1600. 7.7 The CIRANO Program (1994–1997)
  1601. 7.8 The COSMO Program (1998–1999)
  1602. 7.9 The MUSE Program (2000–2004)
  1603. 7.10 The Facility Refurbishment Project
  1604. 7.11 A Program in Support of SFR and the 2020 Prototype: GENESIS
  1605. 7.12 A Program in Support of GFR: ENIGMA
  1606. 7.13 A ``FBR Large Cores'' Generic Study Program
  1607. 7.14 A ``Reflector and Shield'' Program
  1608. 7.15 A ``Deteriorated and Accidental Configuration'' Program
  1609. 8: Experimental Methods Used and Being Developed on These CriticalMock-Ups
  1610. 8.1 The Main Measuring Techniques Used
  1611. 8.1.1 Measurements by Miniature Fission Chambers
  1612. 8.1.2 Measurements by Spectrometry
  1613. 8.2 Classification
  1614. 8.3 Measurement Electronics at EOLE/MINERVE
  1615. 8.3.1 gamma Spectrometry Benches
  1616. 8.3.2 Automatic Changer
  1617. 8.3.3 Use of DSP
  1618. 8.4 Fission Chambers
  1619. 8.5 Gamma Ionization Chambers
  1620. 8.6 Fissile and Activation Detectors
  1621. 8.7 Procedures Linked to the Oscillation Technique
  1622. 8.7.1 Oscillator
  1623. 8.7.2 The Automatic Pilot Rod
  1624. 8.7.3 Acquisition and Online Processing System for Oscillation Measurements
  1625. 8.7.4 Active Sample Handling Equipment
  1626. 8.7.5 Oscillation Samples
  1627. Sample Origin and Manufacturing
  1628. Sample Transport and Transfer
  1629. 9: Integral Parameter Determination Through Experiment
  1630. 9.1 Critical Size
  1631. 9.1.1 Application of Critical Size Determination
  1632. 9.2 Reactivity Effect Measurements
  1633. 9.2.1 Reactivity Worth Measurement by Inverse Kinetics
  1634. 9.2.2 Reactivity Effects by Subcritical Measurements
  1635. 9.2.3 Principle of Subcritical Measurements
  1636. 9.2.4 Amplified Source Method (ASM)
  1637. 9.2.5 Modified Source Multiplication (MSM) Method
  1638. 9.2.6 Practical Implementation of ASM and MSM Subcritical Measurements
  1639. 9.2.7 Associated Uncertainties
  1640. 9.2.8 Example: Isothermal Temperature Coefficient (ITC)
  1641. 9.2.9 Reactivity Effect Measurements by Sample Oscillation
  1642. Principle
  1643. Practical Implementation
  1644. Calibration of the Automatic Pilot Rod
  1645. Signal Calibration
  1646. 9.3 Measurement of Fission Rate Distributions
  1647. 9.3.1 Distributions by Fission Chambers
  1648. RadialMeasurements
  1649. AxialMeasurements
  1650. 9.3.2 Distributions by Integral Gamma Spectrometry
  1651. RadialMeasurements
  1652. AxialMeasurements
  1653. 9.3.3 Particular Use of Fission Rate Distributions: The Buckling Estimation
  1654. 9.3.4 Determination of the Reflector Saving
  1655. 9.3.5 Adjustment of Fission Maps by Particular Peaks
  1656. Principle of Peak Check Technique
  1657. Associated Uncertainties
  1658. 9.4 Spectral Indexes
  1659. 9.4.1 Basic Principle
  1660. Some Examples
  1661. 9.4.2 Modified Conversion Factor
  1662. 9.5 gamma Heating Measurements
  1663. 9.5.1 Principle
  1664. 9.5.2 gamma Dose Calculation
  1665. 9.5.3 The Different Types of TLDs Used
  1666. 9.6 Neutron Noise Measurements
  1667. 9.6.1 The Power Spectral Density (PSD) Method
  1668. 9.6.2 Experimental Principle
  1669. 10: Conclusion
  1670. References
  1671. Generalities
  1672. Programmes in EOLE
  1673. Programmes in MINERVE
  1674. Programmes inMASURCA
  1675. Experimental Techniques andMethods
  1676. Volume IV: Reactors of Generations III and IV
  1677. 19: Pressurized LWRs and HWRs in the Republic of Korea
  1678. 1: New Pressurized LWRs Built (or To Be Built)in the Republic of Korea
  1679. 1.1 Introduction
  1680. 1.2 OPR1000 (Optimized Power Reactor 1000)
  1681. 1.2.1 Design Description
  1682. Building and Structure
  1683. Primary System
  1684. Secondary System
  1685. Control and Electrical Systems
  1686. 1.2.2 Major Safety Design Features
  1687. Safety
  1688. Severe Accident
  1689. 1.3 APR1400 (Advanced Power Reactor 1400)
  1690. 1.3.1 Design Description
  1691. Building and Structure
  1692. Primary System
  1693. Secondary System
  1694. MMIS and Electrical System
  1695. 1.3.2 Major Safety Design Features
  1696. Safety
  1697. Severe Accident
  1698. Proven and Evolutionary Technology
  1699. 1.4 Operation and Construction
  1700. 1.4.1 Status of Operation
  1701. 1.4.2 Construction
  1702. Reactor Containment Building Work
  1703. Modularization
  1704. APR1400 Construction Schedule
  1705. 2: CANDU Reactors in the Republic of Korea
  1706. 2.1 Introduction
  1707. 2.2 System Description
  1708. 2.2.1 CANDU Reactor Model
  1709. 2.2.2 Primary Heat Transport System (PHTS)
  1710. 2.2.3 Moderator System
  1711. 2.2.4 Emergency Core Cooling System (ECCS)
  1712. 2.2.5 Shutdown System
  1713. 2.2.6 Containment System
  1714. 2.3 Major Safety Design Features
  1715. 2.3.1 Defense in Depth
  1716. Two Group Concept
  1717. Redundancy
  1718. Separation
  1719. Fail-Safe Feature
  1720. 2.3.2 Availability
  1721. 2.4 Status of Operation
  1722. 2.5 Spent Fuel Storage Facility
  1723. 2.5.1 Wet Storage of Spent CANDU Fuel
  1724. 2.5.2 Dry Storage of Spent CANDU Fuel
  1725. 3: Conclusions
  1726. References
  1727. 20: VVER-Type Reactors of Russian Design
  1728. 1: Introduction
  1729. 2: VVER-440 Reactors
  1730. 2.1 Design Description
  1731. 2.1.1 Buildings and Structures
  1732. Reactor Building
  1733. Pressure Relief Tower
  1734. Auxiliary Building
  1735. Turbine Building
  1736. 2.1.2 Systems of the Primary Circuit
  1737. Reactor Coolant System
  1738. Reactor Vessel and Internals
  1739. Reactor Core
  1740. Reactor Coolant Pump
  1741. Pressurizer
  1742. SteamGenerator
  1743. Chemical and Volume Control System
  1744. 2.1.3 Systems of the Secondary Circuit
  1745. Main Steam Line System
  1746. Main Feedwater System
  1747. Turbine
  1748. Generator
  1749. Moisture Separator–Reheater
  1750. 2.1.4 Instrumentation and Electrical Systems
  1751. Instrumentation and Control Systems
  1752. Main Control Room
  1753. Electrical Systems
  1754. 2.2 Basic Safety Properties
  1755. 2.2.1 Safety Philosophy
  1756. 2.2.2 Safety Systems and Properties
  1757. 2.2.3 Maximum Design Basis Accident
  1758. 2.2.4 Severe Accidents
  1759. 2.2.5 Seismic Design
  1760. 2.3 Operational Experience and Decommissioning
  1761. 2.3.1 Operational Experience
  1762. 2.3.2 Life-Time Extension
  1763. 3: VVER-1000 Reactors
  1764. 3.1 Design Description
  1765. 3.1.1 Buildings and Structures
  1766. Reactor Building
  1767. Auxiliary Building
  1768. Turbine Building
  1769. 3.1.2 Systems of Primary Circuit
  1770. Reactor Coolant System
  1771. Reactor Vessel and Internals
  1772. Reactor Coolant Pump
  1773. Pressurizer
  1774. SteamGenerator
  1775. Chemical and Volume Control System
  1776. 3.1.3 Secondary-Side Systems
  1777. Main Steam Line System
  1778. Main Feedwater System
  1779. Turbine
  1780. Generator
  1781. 3.1.4 I&C and Electrical Systems
  1782. I&C System
  1783. Main Control Room
  1784. Electrical Systems
  1785. 3.2 Main Aspects of VVER-1000 Safety
  1786. 3.2.1 Safety Philosophy
  1787. 3.2.2 Safety Systems and Distinctive Features
  1788. Protective Systems
  1789. Localizing Systems
  1790. Supporting Systems
  1791. Control Systems
  1792. 3.2.3 Maximum Design Basis Accident
  1793. 3.2.4 Severe Accidents
  1794. 3.2.5 Seismic Design
  1795. 3.3 Operational Experience
  1796. 4: Conclusion
  1797. 21: Sodium Fast Reactor Design
  1798. 1: Motivations for Fast Neutron Systems
  1799. 1.1 Basic Principles and Consequences
  1800. 1.1.1 Conditions for Breeding
  1801. 1.1.2 Simplified Neutronic Balance in a PWR
  1802. 1.1.3 Simplified Neutronic Balance in a FBR
  1803. 1.1.4 Balances Comparison
  1804. 1.2 Effective Utilization of Resources
  1805. 1.2.1 Uranium Resources and Breeding
  1806. 1.3 Flexible Use of Actinides
  1807. 1.4 Waste Minimization*6pt
  1808. 2: SFR History and Current Projects
  1809. 2.1 Overview
  1810. 2.2 USA
  1811. 2.3 Russia
  1812. 2.4 Europe
  1813. 2.4.1 France
  1814. 2.4.2 UK
  1815. 2.4.3 Germany
  1816. 2.4.4 Italy
  1817. 2.4.5 Belgium, Netherland
  1818. 2.4.6 Multinational Project: EFR
  1819. 2.5 Japan
  1820. 2.5.1 Joyo
  1821. 2.5.2 Monju
  1822. 2.5.3 Rapid-L
  1823. 2.5.4 L-4S "Nuclear Battery''
  1824. 2.5.5 Commercial Fast Reactor Development Program
  1825. 2.6 India
  1826. 2.6.1 FBTR
  1827. 2.6.2 PFBR
  1828. 2.7 China
  1829. 2.8 Korea
  1830. 3: Basic Design Choices
  1831. 3.1 Sodium as Coolant
  1832. 3.1.1 Physical Properties
  1833. 3.1.2 Chemical Properties
  1834. 3.1.3 Neutronic Properties
  1835. 3.2 Fuel Design
  1836. 3.2.1 Fuel Element
  1837. 3.2.2 Fuel Subassembly
  1838. 3.3 Pool/Loop and Modular Design
  1839. 3.3.1 Features of the Primary Circuit Concepts
  1840. 3.3.2 Pool Concept: Motivation and Challenges
  1841. 3.3.3 Loop Concept: Motivation and Challenges
  1842. 3.3.4 Modular Concept: Motivation and Challenges
  1843. 3.4 Main Components and Systems
  1844. 3.4.1 Description of Heat Transport Circuits and Components
  1845. 3.4.2 Primary Component Layout on the Top Shield
  1846. 3.4.3 Reactor Assembly Support Options
  1847. 3.4.4 Basic Design Options of Primary Circuit Components
  1848. 3.4.5 Design Improvements for Future SFRs
  1849. 3.4.6 Intermediate Circuits and Steam Generator
  1850. 3.4.7 Summary
  1851. 3.5 Fuel Handling
  1852. 3.5.1 Function
  1853. 3.5.2 Classification
  1854. 3.5.3 On-Line Verus Off-Line Refuelling
  1855. 3.5.4 Fresh Subassembly Handling
  1856. 3.5.5 Spent Subassembly Handling
  1857. 3.5.6 In-Vessel/Ex-Vessel Storage to Reduce Decay Heat of Subassembly
  1858. In-Vessel Handling
  1859. Ex-Vessel Handling
  1860. 3.5.7 Design Validation
  1861. 3.5.8 Innovative Fuel Handling Concepts
  1862. 3.6 Recent Evolution
  1863. 3.6.1 Intermediate Coupling Fluid
  1864. Fluid Preselection
  1865. Evaluation Method
  1866. Results
  1867. Key features for the Pb-Bi alloy
  1868. Impact on Design
  1869. Conclusions
  1870. 3.6.2 Advanced Energy Conversion System
  1871. Introduction
  1872. Design Consideration for Brayton Cycle
  1873. Classical Indirect Gas ECS
  1874. Indirect/Combined ECS
  1875. Supercritical Carbon Dioxide Indirect ECS
  1876. Synthesis and Future Prospects of Advanced ECS
  1877. Nomenclature
  1878. 3.6.3 Plant Layout
  1879. Reactor Building
  1880. Crane Hall
  1881. Above Roof Area
  1882. Reactor Service Area
  1883. Fuel and Component Handling Area
  1884. Steam Generator and DHR Buildings
  1885. Plant Layout
  1886. 4: Safety Principles
  1887. 4.1 Introduction
  1888. 4.2 Safety Features Associated with Sodium
  1889. 4.2.1 Physical Properties
  1890. 4.2.2 Nuclear Properties
  1891. 4.2.3 Chemical Reactions
  1892. 4.2.4 Thermalhydraulics and Structural Mechanics Considerations
  1893. 4.3 Safety Objectives and Principles Applicable for Future Reactors
  1894. 4.4 The Defense in Depth Principle
  1895. 4.4.1 The Levels of the Defense in Depth
  1896. 4.4.2 Objectives and Scope of Defense in Depth
  1897. 4.5 Safety Approach for the SFR to Address the Severe Plant Conditions
  1898. 4.6 SFR: Safety Demonstration vis-à-vis of the Whole Core Melting
  1899. 4.6.1 Prevention of Whole Core Melting Situations
  1900. 4.6.2 Whole Core Melt Situations: Consequences' Control and Mitigation
  1901. Implementation of Provisions Allowing Mastering the Consequences of the Whole Core Accident
  1902. Main Phenomena Which Can Lead the Release ofMechanical Energy
  1903. Radiological Consequences
  1904. 4.6.3 Initiating Events, Sequences, and Situations ``Practically Eliminated''
  1905. 4.6.4 Control and Management of the Safety Functions
  1906. Reactivity Control
  1907. Decay Heat Removal
  1908. Confinement of Radioactive and HarmfulMaterials
  1909. 4.6.5 Other Specific Risks
  1910. Sodium Fires
  1911. 4.6.6 Hazards
  1912. 4.7 R&D Organization
  1913. 4.8 Conclusions
  1914. 5: The Materials
  1915. 5.1 Fuel Materials
  1916. 5.1.1 Oxide
  1917. Fuel Element Characteristics
  1918. Irradiation Conditions in Nominal Operation
  1919. Temperatures in the Fuel Element
  1920. Beginning of Life Phenomena
  1921. Phenomena Occurring During the Life in Reactor
  1922. 5.1.2 Metal
  1923. 5.1.3 Properties of Metal Fuel for Design
  1924. Phase Diagram
  1925. Thermal Conductivity of Fuel
  1926. Thermal Conductivity of Fuel with Burnup
  1927. Coefficient of Thermal Expansion of Fuel
  1928. Fission Gas Release
  1929. Hardness ofMaterial – U-15Wt% Pu-6.8Wt%Zr
  1930. Behavior under Irradiation
  1931. 5.1.4 Carbide and Nitride
  1932. Properties of Dense Ceramic Fuels
  1933. Design of Dense Ceramic Fuel Pins
  1934. Conclusion
  1935. 5.2 Structural Materials
  1936. 5.3 Absorber Materials
  1937. 5.3.1 Introduction
  1938. Russia
  1939. France
  1940. Japan
  1941. Main Control Rods Characteristics
  1942. 5.3.2 Boron Carbide
  1943. Properties
  1944. Behavior under Neutron Irradiation
  1945. 5.3.3 Absorber Pins
  1946. 5.3.4 Developments
  1947. 5.4 Shield Materials
  1948. 5.4.1 Vessel Shielding
  1949. 5.4.2 Sodium Activation
  1950. 6: Core Design
  1951. 6.1 Performances Objectives and Design Criteria
  1952. 6.1.1 Safety Objectives
  1953. 6.1.2 Flexibility SFR Cores
  1954. 6.1.3 Core Competitiveness
  1955. 6.1.4 Design Criteria
  1956. Criteria for Fuel Design
  1957. Criterion of NoMechanical Fuel–Clad Interaction
  1958. Criterion of Strength for Fuel Rod Due to Internal Pressure
  1959. Other Design Criteria
  1960. Criteria forWrapper Tube
  1961. 6.1.5 Core Shape Design
  1962. 6.2 Core Neutronics
  1963. 6.2.1 Elementary Physical Analysis
  1964. 6.2.2 Predesign Studies
  1965. 6.2.3 Detailed Design Studies
  1966. 6.2.4 Calculation Tool for Neutronic Core Design
  1967. 6.3 Core Thermalhydraulics
  1968. 6.3.1 Core Flow Distribution
  1969. Objective
  1970. Method
  1971. Mixing Coefficients
  1972. 6.3.2 Calculation of Fuel Assembly Thermalhydraulics
  1973. Introduction
  1974. Thermal Balance Equation
  1975. Bundle Flow Distribution
  1976. Modeling Flow Deviated between Sub-Channels
  1977. 6.3.3 Assessment of Hexcan Temperatures
  1978. Simplified Description of the Core Thermalhydraulics
  1979. Calculation of Hexcan Temperatures
  1980. TRIO-VF Thermalhydraulic Computer Code
  1981. Core Modeling
  1982. 6.4 Core Mechanics
  1983. 6.4.1 Subassemblies Distortions
  1984. 6.4.2 Operating Considerations
  1985. Safety Considerations
  1986. 6.4.3 Modeling of the SFR Core Static Mechanical Behavior
  1987. 6.4.4 Experimental Validation
  1988. 6.4.5 Conclusion
  1989. 6.5 Reactivity Effects
  1990. 6.5.1 Description of the Feedback Effects
  1991. Doppler Effect
  1992. Sodium Expansion
  1993. Clad Expansion
  1994. Wrapper Expansion
  1995. Fuel Expansion
  1996. Grid Expansion
  1997. Differential Expansion between Core, Vessel and Control Rods
  1998. Pad Effect
  1999. 6.5.2 Calculation Method
  2000. Main Principle
  2001. Cross Section Calculation Method
  2002. 6.5.3 Return to a Temperature Variation
  2003. 6.5.4 Validity of These Coefficients
  2004. 7: Specific Thermalhydraulics Issues
  2005. 7.1 Thermal Stratification
  2006. 7.1.1 Phenomena
  2007. 7.1.2 Locations Prone to Stratification
  2008. 7.1.3 Effect of Stratification
  2009. 7.1.4 Numerical Simulation of Stratification
  2010. 7.1.5 Experimental Simulation of Stratification
  2011. 7.1.6 Design Guidelines for Stratification
  2012. 7.2 Thermal Striping
  2013. 7.2.1 Phenomenon of Striping
  2014. 7.2.2 Locations Prone to Thermal Striping
  2015. 7.2.3 Effect of Striping
  2016. 7.2.4 Prediction of Thermal Striping
  2017. 7.2.5 Design Guidelines for Striping
  2018. 7.3 Free Level Fluctuations
  2019. 7.3.1 Phenomenon
  2020. 7.3.2 Locations of Concern
  2021. 7.3.3 Methods for Prediction of Level Fluctuations
  2022. 7.4 Cellular Convection
  2023. 7.4.1 Phenomenon
  2024. 7.4.2 Location of Cellular Convection
  2025. 7.4.3 Effects of Cellular Convection
  2026. 7.4.4 Methods for Prediction of Cellular Convection
  2027. 7.4.5 Managing Cellular Convection
  2028. 7.5 Gas Entrainment
  2029. 7.5.1 Phenomenon
  2030. Entrainment Due to Differential Dissolution of Argon
  2031. Liquid Fall
  2032. Vortex Activated Entrainment
  2033. Drain-Type Vortex
  2034. Shearing of Gas–Liquid Interface
  2035. 7.5.2 Potential Areas for Gas Entrainment
  2036. 7.5.3 Effect of Gas Entrainment
  2037. 7.5.4 Prediction of Gas Entrainment
  2038. 7.5.5 Design Provisions Against Gas Entrainment and Other Remarks
  2039. 7.6 Thermalhydraulic Design Criteria and Analysis Methods
  2040. 7.6.1 Temperature Asymmetry in Cold Pool
  2041. 7.6.2 Free Level Fluctuation
  2042. 7.6.3 Free Surface Velocity in the Pool
  2043. 7.6.4 High-Cycle Temperature Fluctuation
  2044. 7.6.5 Heat Loss to Top Shield
  2045. 7.6.6 Analysis Methods*6pt
  2046. 8: Specific Structural Mechanics Issues
  2047. 8.1 Introduction
  2048. 8.2 High Cycle Thermal Fatigue: Thermal Striping and StratificationInstabilities
  2049. 8.2.1 Experimental Evidence of Thermal Striping
  2050. 8.2.2 Assessment of Potential Damage by Thermal Striping at theDesign Stage
  2051. 8.2.3 Conclusion, Future Prospects
  2052. 8.3 Free Level, Stratification Level Fluctuations
  2053. 8.3.1 The Free Level Issues
  2054. 8.3.2 In Sodium Stratification Issues
  2055. 8.3.3 Conclusion
  2056. 8.4 Seismic-Induced Forces and Their Effects
  2057. 8.4.1 Geologic Phenomena
  2058. 8.4.2 Seismic Risk
  2059. 8.4.3 Site Effects of Seismic Forces
  2060. 8.4.4 Effects of Seismic Forces on Structures
  2061. 8.4.5 Seismic Piping Behavior and Design Criteria
  2062. 8.5 Fluid Structure Interaction in the Fast Reactor Cores
  2063. 8.5.1 Short Description of the Structures of the Reactor
  2064. 8.5.2 Methods to Take into Account FSI
  2065. 8.5.3 Seismic Behavior of the Fast Reactor Cores
  2066. 8.5.4 Design Model for the Seismic Behavior of the Core
  2067. 8.5.5 Overflow Instabilities
  2068. 8.5.6 New Fluid Structure Interaction Phenomena to be Investigated
  2069. 8.6 Buckling of Thin Shells
  2070. 8.6.1 Buckling Design Approach
  2071. 8.6.2 Simplified Analysis Method for Buckling of Shells Under SeismicLoadings
  2072. 8.6.3 Thermal Buckling Due to Stationary Temperature Gradient
  2073. 8.6.4 Progressive Buckling Due to Moving Temperature Gradients
  2074. 8.6.5 Creep Buckling
  2075. 8.6.6 An Integrated Buckling Analysis of Thin Vessels of Reactor Assembly
  2076. 8.6.7 Investigation of Buckling of Safety Vessel Subjected to Seismic Loading
  2077. 8.6.8 Investigation of Buckling of Top Shield Plates under CDA Loading
  2078. 8.6.9 Experimental Validations of Computer Codes
  2079. Validation of CAST3M
  2080. Validation of ABAQUS Code
  2081. 8.6.10 Summary
  2082. 8.7 Design Criteria and Analysis Method
  2083. 8.7.1 Loadings
  2084. Level A Service Loadings
  2085. Level B Service Loadings
  2086. Level C Service Loadings
  2087. Level D Service Loadings
  2088. 8.7.2 Design Limits
  2089. Strain Limits
  2090. Creep Damage
  2091. Fatigue Damage
  2092. Creep–Fatigue Interaction
  2093. 8.7.3 Analysis Methods
  2094. Simplified Methods
  2095. Inelastic Analysis
  2096. 8.7.4 Buckling Design
  2097. Time Independent Buckling
  2098. Time-Dependent Buckling Design
  2099. 9: Plant Dynamics
  2100. 9.1 About the Design Basis Conditions, the Design Extension Conditionsand the Residual Risk
  2101. 9.2 Safety Criteria
  2102. 9.3 Analysis Methods
  2103. 9.3.1 Rules for the Different Conditions
  2104. Aggravating failure
  2105. Examples of combination of IEs
  2106. Earthquakes
  2107. Single Failure Criterion
  2108. 9.3.2 Line of Protection Analysis
  2109. 9.3.3 Method for Safety Classification of Reactor Components
  2110. 9.3.4 Probabilistic Safety Assessment
  2111. 9.4 Illustration of SFRs Behavior in Typical Transient Situations
  2112. 9.5 Anticipated Transients Without SCRAM
  2113. 10: Severe Accidents
  2114. 10.1 Introduction
  2115. 10.2 History
  2116. 10.2.1 Instances of Severe Accidents in Fast Reactors
  2117. 10.3 Defense in Depth
  2118. Level-1
  2119. Level-2
  2120. Level-3
  2121. Level-4
  2122. Level-5
  2123. 10.3.1 Physical Barriers
  2124. 10.4 CDA: Phenomenology
  2125. 10.4.1 Different Phases of a CDA
  2126. Pre-disassembly Phase
  2127. Transition Phase
  2128. Disassembly Phase
  2129. Mechanical and Thermal Consequences of CDA
  2130. 10.5 Analysis for Mechanical Consequences
  2131. 10.5.1 Idealization of Molten Core Expansion Behavior
  2132. 10.5.2 Analysis for Vessel and Roof Mechanical Loading
  2133. Theoretical Predictions
  2134. Experimental Validation of Computer Codes: Typical Case Study
  2135. Structural Integrity Assessment under CDA: Two Case Studies
  2136. 10.6 Post Accident Phase
  2137. 10.6.1 Scenarios
  2138. 10.6.2 Core Debris Accommodation
  2139. 10.6.3 In-Vessel Debris Accommodation
  2140. 10.6.4 Ex-Vessel Debris Accommodation
  2141. 10.7 Computer Codes and Validation
  2142. 10.7.1 Validation of Codes: A Case Study
  2143. 10.8 Innovations Toward Enhanced Safety
  2144. 10.8.1 Core
  2145. 10.8.2 Sodium Fire and Sodium–Water Reactions
  2146. 10.8.3 Reliable and Diverse Shutdown Systems
  2147. 10.8.4 Decay Heat Removal Systems
  2148. 10.8.5 Core Catcher
  2149. 10.8.6 Breakthroughs for Future SFR
  2150. 10.9 Summary
  2151. 11: French Licensing Experience on SFR
  2152. 11.1 Phenix
  2153. 11.2 SPX-1
  2154. 11.3 SPX-2
  2155. 12: Innovative Design Evolutions
  2156. 12.1 In India
  2157. 12.1.1 Pool Type Concept
  2158. 12.1.2 Reactor Power
  2159. 12.1.3 Core
  2160. Fuel
  2161. Core Layout
  2162. Core Height
  2163. Pin and Subassembly Sizes
  2164. 12.1.4 Shutdown Systems
  2165. 12.1.5 Main Heat Transport System
  2166. 12.1.6 DHR System
  2167. 12.1.7 Main Structural Materials
  2168. 12.1.8 Operating Temperatures
  2169. 12.1.9 Reactor Assembly
  2170. 12.1.10 Component Handling
  2171. 12.1.11 Plant Layout
  2172. 12.2 In France
  2173. 12.2.1 A Core with Improved Safety Performances
  2174. 12.2.2 A Better Resistance to Severe Accidents and External Hazards
  2175. 12.2.3 An Optimized Energy Conversion System Optimized to Reduceor Exclude the Risk of Sodium–Water Reaction
  2176. 12.2.4 A Reexamination of the Reactor and Its Components Design
  2177. 12.2.5 ASTRID Program
  2178. References
  2179. 22: Gas-Cooled Reactors
  2180. 1: Gas Cooling
  2181. 2: Natural Uranium Fueled Reactors: Magnox and NUGG
  2182. 2.1 The Magnox Family
  2183. 2.2 Natural Uranium Graphite Gas (NUGG) Reactors
  2184. 2.3 Safety of NUGG and MAGNOX Reactors
  2185. 3: Advanced Gas-Cooled Reactor (AGR)
  2186. 4: High Temperature Reactors HTR
  2187. 4.1 Particles, Pebbles and Prisms
  2188. 4.2 HTR Demos: Dragon, AVR, Peach Bottom
  2189. 4.2.1 Dragon
  2190. 4.2.2 AVR
  2191. 4.2.3 Peach Bottom
  2192. 4.3 Fort St Vrain and THTR Prototypes
  2193. 4.3.1 Fort St Vrain
  2194. 4.3.2 The Schmehausen HTTR
  2195. 4.4 Lessons Learned from the First HTR Units
  2196. 4.5 Recent Japanese and Chinese Demos
  2197. 4.6 GT-MHR and PBMR
  2198. 4.6.1 GT-MHR, Gas Turbine Modular High Temperature Reactor
  2199. 4.6.2 ESKOM PBMR Pebble Bed Modular Reactor
  2200. 4.6.3 PBMR Fuel Fabrication and Fuel Cycle
  2201. 5: The NERVA Story (Simpson JW 1995)
  2202. 6: Gas Cooling in Generation IV (DEN 2006)
  2203. 6.1 VHTR
  2204. 6.1.1 Electricity Production
  2205. 6.1.2 Hydrogen Production
  2206. 6.1.3 Water Desalination
  2207. 6.1.4 NGNP Project (USA)
  2208. 6.2 GFR
  2209. 6.2.1 Specific Problems Associated with the GFR
  2210. 6.2.2 The Advantages of the GFR System Have Two Main Origins
  2211. 7: Conclusion
  2212. References
  2213. 23: Lead-Cooled Fast Reactor (LFR) Design
  2214. 1: Lead-Cooled Fast Reactor (LFR) Development
  2215. 1.1 Lead–Bismuth Eutectic (LBE) for Submarine Propulsion
  2216. 1.2 The Russian Design for Civilian Fast Reactors Cooled by HLM
  2217. 1.2.1 The BREST 300
  2218. 1.2.2 The SVBR-75
  2219. 1.3 HLM-Cooled ADS Systems
  2220. 1.4 The LFR in Generation IV
  2221. 1.5 The LFR and ADS Designs Considered in the Handbook
  2222. 1.5.1 SSTAR
  2223. 1.5.2 ELSY
  2224. 1.5.3 MYRRHA
  2225. 1.5.4 EFIT
  2226. 2: Design Criteria and General Specifications
  2227. 2.1 Sustainability
  2228. 2.1.1 Resource Utilization
  2229. 2.1.2 Waste Minimization and Management
  2230. 2.2 Economics
  2231. 2.2.1 Risk to Capital
  2232. 2.2.2 Other Use of Nuclear Heat
  2233. 2.3 Safety and Reliability
  2234. 2.3.1 Operation Will Excel in Safety and Reliability
  2235. 2.3.2 Low Likelihood and Degree of Core Damage
  2236. 2.3.3 Reduced Need for Offsite Emergency Response
  2237. 2.4 Proliferation Resistance and Physical Protection
  2238. 2.4.1 Unattractive Route for Diversion of Weapon-Usable Material
  2239. 2.4.2 Increased Physical Protection Against Acts of Terrorism
  2240. 3: Neutronics
  2241. 3.1 Neutronic Properties of Lead
  2242. 3.1.1 Moderation
  2243. 3.1.2 Absorption
  2244. 3.2 Fuel Performances in LFRs
  2245. 3.2.1 Fission Cross Sections
  2246. 3.2.2 Average Number of Fission Neutrons
  2247. 3.2.3 Fuel Utilization
  2248. 3.2.4 Spectrum Evolution with Burn-Up
  2249. 3.2.5 Effective Delayed Neutron Fraction and Prompt Neutrons Lifetime
  2250. 3.2.6 LFR Capabilities of MAs Transmutation
  2251. 3.3 Neutronic Performances of Typical Absorbers in an LFR
  2252. 3.3.1 Boron Carbide
  2253. 3.3.2 Indium–Cadmium Eutectic
  2254. 3.3.3 Europium
  2255. 4: Lead Properties
  2256. 4.1 Physical Properties
  2257. Normal Melting Point
  2258. Volume Change at Melting
  2259. Latent Heat of Melting at the Normal Melting Point
  2260. Normal Boiling Point
  2261. Heat of Vaporization at the Normal Boiling Point
  2262. Saturation Vapor Pressure
  2263. Surface Tension
  2264. Density
  2265. Thermal Expansion
  2266. Sound Velocity and Compressibility
  2267. Heat Capacity
  2268. Critical Constants
  2269. Viscosity
  2270. Electric Resistivity
  2271. Thermal Conductivity and Thermal Diffusivity
  2272. 4.2 Chemistry Control and Monitoring Systems
  2273. 4.2.1 The Thermodynamical Base
  2274. 4.2.2 Thermodynamical Data and Diagrams
  2275. Change in the Standard Free Energy
  2276. 4.3 Thermal Hydraulics
  2277. 5: Compatibility of Structural Materials with Lead
  2278. 5.1 Structural Materials Corrosion in Lead
  2279. 5.2 Effect of Lead on Properties of Structural Materials
  2280. 6: Core
  2281. 6.1 Introductory Remarks for LFR Core Design
  2282. 6.1.1 Preliminary Evaluation of Lead and LBE Impact on Core Design
  2283. 6.1.2 Technological Constraints for LFR Design
  2284. 6.2 Conceptual Design Approach
  2285. 6.2.1 Critical Reactors
  2286. 6.2.2 Subcritical Reactors
  2287. Case Study: EFIT
  2288. 6.2.3 Adiabatic Reactors
  2289. 6.3 Design Diagnostics and Post-Process Feedbacks
  2290. 6.3.1 Overall BU Performances
  2291. 6.3.2 Sizing and Placement of Control Systems
  2292. 6.4 Reactivity Coefficients
  2293. 6.4.1 Lead Void Reactivity
  2294. 6.4.2 Doppler Effect
  2295. 6.4.3 Dimension and Density Reactivity Coefficients
  2296. 6.4.4 Feedback Reactivity Coefficients
  2297. 7: Reactor System
  2298. 7.1 Reactor Vessel and Safety Vessel
  2299. 7.2 Reactor Internal Structures
  2300. 7.3 Steam Generator
  2301. 7.4 Primary Coolant Circulation
  2302. 8: Decay Heat Removal System
  2303. 8.1 Reactor Vessel Air Cooling System
  2304. 8.2 Water Loops and Associated Dip Coolers
  2305. 8.3 Steam Condensers on the Steam Loops
  2306. 9: Nuclear Island
  2307. 10: Concluding Remarks and Open Issues
  2308. Acknowledgment
  2309. Abbreviations
  2310. References
  2311. 24: GEMast STAR: The Alternative Reactor Technology
  2312. 1: Introduction
  2313. 2: Supplemental Neutrons from Accelerators
  2314. 3: Molten Salt Technology
  2315. 4: Graphite Developments
  2316. 5: Integrating Accelerators, Molten Salt, and Graphite
  2317. 6: Calculations of GEMSTAR Burn-Up Performance
  2318. 7: Corrections for MCNP5: Graphite Absorption
  2319. 8: GEMast STAR Reactor Parameters
  2320. 9: Burning LWR Spent Fuel
  2321. 10: Other Fuels
  2322. 10.1 Thorium and Depleted Uranium Fuels
  2323. 10.2 Fueling GEMSTAR Over the Long Term
  2324. 11: Other Factors Affecting GEMSTAR Success
  2325. 11.1 Ultimate Ocean Disposal?
  2326. 11.2 GEMast STAR Comparison with Fast Breeder Reactors
  2327. 11.3 Fusion Neutron Sources
  2328. 12: Nonproliferation Advantages of GEMSTAR
  2329. 13: Cost Estimation
  2330. 13.1 GEMast STAR Accelerator Costs
  2331. 13.2 GEMast STAR Reactor Costs and Breakeven Electricity Price
  2332. 14: Summary
  2333. References
  2334. Volume V: Fuel Cycles, Decommissioning,Waste Disposal and Safeguards
  2335. 25: Front End of the Fuel Cycle
  2336. 1: Description
  2337. 2: Uranium Exploration and Mining
  2338. 2.1 The Element Uranium
  2339. 2.1.1 Uranium Resources
  2340. 2.1.2 The Oklo Phenomenon
  2341. Oklo uranium was indeed different from natural uranium everywhere else. Why?
  2342. 2.2 Uranium Exploration
  2343. 2.3 Uranium Mining and Milling
  2344. 2.4 Sites Rehabilitation
  2345. 3: Conversion
  2346. 4: Uranium Enrichment
  2347. 4.1 Principle, Cascade, SWU, HEU, LEU
  2348. 4.2 Enrichment Technologies
  2349. 4.2.1 Gaseous Diffusion
  2350. 4.2.2 Ultracentrifugation
  2351. 4.2.3 Other Methods
  2352. 5: Fuel Fabrication
  2353. 5.1 Elements of Fuel Design
  2354. 5.1.1 Fissile/Fertile Couple
  2355. 5.1.2 Fuel Material
  2356. 5.1.3 Cladding Materials
  2357. 5.1.4 Absorber Materials
  2358. 5.2 The LWR Fuel
  2359. 5.2.1 Fuel Pellets Production
  2360. 5.2.2 Fuel Rods Fabrication
  2361. 5.2.3 Assembly
  2362. 5.3 MOX Fuel
  2363. 5.4 Other Fuel
  2364. 5.4.1 CANDU
  2365. 5.4.2 FBR
  2366. 5.4.3 HTR
  2367. 5.5 In-Reactor PWR Fuel Behavior
  2368. 6: Thorium
  2369. 7: Plutonium
  2370. References
  2371. 26: Transuranium Elements in the Nuclear Fuel Cycle
  2372. 1: General Introduction
  2373. 2: Fundamental Aspects of Transuranium Fuels
  2374. 2.1 General
  2375. 2.2 Characteristics of Transuranium Fuel Forms
  2376. 2.3 Properties of Transuranium Elements and Compounds
  2377. 3: Transuranium Element Fuel and Target Fabrication
  2378. 3.1 General Aspects
  2379. 3.2 Solid Solution Oxide Fuels Fabrication by Wet Routes (Precipitation,Sol–Gel, and Infiltration)
  2380. 3.3 Powder Metallurgy for the Production of Solid Solution Fuels
  2381. 3.4 Oxide Fuels with Composite Microstructure
  2382. 3.5 Minor Actinide Carbide, Nitride, and Metal Fuels
  2383. 3.5.1 General Considerations
  2384. 3.5.2 Production of Minor Actinide Nitrides
  2385. 3.5.3 Production of Minor Actinide Bearing Metal Fuels
  2386. 4: Irradiation Behavior of Transuranium Fuels
  2387. 4.1 Mixed Oxide Fuels
  2388. 4.2 Metal Fuels
  2389. 4.3 Carbide and Nitride Fuels
  2390. 4.4 Molten Salt Fuels
  2391. 4.5 Other Fuel Types
  2392. 4.6 Summary
  2393. 5: Reprocessing
  2394. 5.1 Introduction
  2395. 5.2 Advanced Aqueous Reprocessing
  2396. 5.2.1 Fundamental Studies
  2397. 5.2.2 Process Development
  2398. 5.3 Pyro-Reprocessing
  2399. 5.3.1 US Pyrochemistry Projects
  2400. 5.3.2 European Pyrochemistry Projects
  2401. 5.3.3 Liquid–Liquid Reductive Extraction in Molten Fluoride/Liquid Aluminum
  2402. 5.3.4 Technical Uncertainties of the Pyro-Reprocessing
  2403. 5.3.5 Head-End Conversion Processes
  2404. 6: Impact of Transuranium Elements on Storage and WasteDisposal Concepts
  2405. 6.1 General Aspects
  2406. 6.2 Transuranium Elements and Wasteforms
  2407. 6.2.1 Transuranium Elements in Spent Fuel
  2408. 6.2.2 Transuranium Elements in Waste Glass
  2409. 6.2.3 Transuranium Elements in Advanced Cycle Waste Forms
  2410. 6.3 Special Wasteforms for the Immobilization of Transuranium Elements
  2411. 6.4 Long-Term Behavior of Waste Containing Transuranium Elements
  2412. 6.4.1 Consequences of Alpha-Decay Damage and HeliumBuild-Up in the Waste Form
  2413. 6.4.2 Corrosion Behavior of the Waste Form in Contact with Water
  2414. References
  2415. 27: Decommissioning of Nuclear Plants
  2416. 1: Nuclear Plants Decommissioning Overview
  2417. 1.1 Definition and Scope of Decommissioning
  2418. 1.2 Introduction to Some Decommissioning Challenges
  2419. 1.2.1 Organization and Management
  2420. 1.2.2 Safety-Related Issues
  2421. 1.2.3 Decommissioning Funding
  2422. 1.2.4 Waste Management
  2423. 1.3 Decommissioning Strategies
  2424. 1.3.1 Overview
  2425. 1.3.2 Issues Affecting the Choice of Decommissioning Strategy
  2426. National Nuclear Strategies
  2427. Plant Characteristics
  2428. Protection of Health, Safety, and the Environment
  2429. Radioactive Waste Management
  2430. Future Use of the Site
  2431. Development of Decommissioning Technologies
  2432. Cost and Availability of Funds
  2433. Social and Other Considerations
  2434. 1.4 Decommissioning in the World
  2435. 2: Decommissioning Organization and Management
  2436. 2.1 Overview
  2437. 2.2 Issues Affecting Decommissioning Organization and Management
  2438. 2.2.1 Decommissioning Strategy
  2439. 2.2.2 Safety Issues
  2440. 2.2.3 Work Approaches
  2441. 2.2.4 Impact on Staffing
  2442. 2.3 Organization and Management in the Various Phases ofDecommissioning
  2443. 2.3.1 The Planning Phase
  2444. 2.3.2 The Transition Phase
  2445. 2.3.3 The Active Phases of Decommissioning
  2446. 2.3.4 The Safe Enclosure Phase
  2447. 2.3.5 The Post-Dismantling Period
  2448. 2.3.6 Spent Fuel and Waste Storage
  2449. 2.4 Management for Active Phases of Decommissioning
  2450. 2.4.1 Overview
  2451. 2.4.2 The Decommissioning Management Team
  2452. 2.4.3 Change Management
  2453. 2.5 Decommissioning Planning and Licensing
  2454. 2.5.1 Overview
  2455. 2.5.2 Decommissioning Planning
  2456. 2.5.3 Stages of Planning
  2457. 2.5.4 Content of Decommissioning Plan
  2458. 2.5.5 Decommissioning Optimization
  2459. 2.5.6 Project Risk Management
  2460. 2.5.7 Regulatory Approval
  2461. 2.5.8 Work Packages and Procedure
  2462. 2.6 Role of Quality Assurance
  2463. 2.6.1 Overview
  2464. 2.6.2 Control of Modifications to the Plant
  2465. 2.6.3 Radiation Protection and Environmental Safety Control
  2466. 2.6.4 Control of Outside Contracted Services
  2467. 2.6.5 Surveillance and Inspections
  2468. 2.6.6 Information Management
  2469. 2.6.7 Safety Audits
  2470. 2.6.8 Management, Assessment and Reporting of Incidents and Events
  2471. 2.7 Responsibilities and Qualifications
  2472. 2.7.1 Licensee
  2473. 2.7.2 Decommissioning Project Manager (DPM)
  2474. 2.7.3 Technical Support
  2475. Radiation Protection
  2476. Industrial Safety
  2477. Quality Assurance
  2478. Engineering
  2479. Regulatory Control
  2480. 2.7.4 Decommissioning Operations
  2481. Decontamination and Dismantling
  2482. WasteManagement
  2483. Maintenance
  2484. Specialist Contractors
  2485. 2.7.5 Administration Services
  2486. Accounting and Finance
  2487. Contracts and Procurement
  2488. Information Management
  2489. Personnel and Training
  2490. 2.7.6 Interfaces
  2491. 3: Plant and Site Characterization
  2492. 3.1 Initial Plant Characterization
  2493. 3.1.1 Radioactivity Sources
  2494. Nuclear Reactors
  2495. Other Nuclear Facilities
  2496. 3.1.2 The Concept and Extent of Characterization
  2497. 3.1.3 Structure Characterization
  2498. 3.1.4 System and Equipment Characterization
  2499. 3.2 Site Characterization
  2500. 3.2.1 Surface Soil Contamination
  2501. 3.2.2 The NRC Acceptance Criteria
  2502. 3.2.3 Subsurface Soil Contamination
  2503. 3.2.4 Surface Water Contamination
  2504. 3.2.5 Groundwater Contamination
  2505. 4: Decontamination Techniques
  2506. 4.1 Overview
  2507. 4.1.1 Objectives of Decontamination Techniques
  2508. 4.1.2 Selection of Decontamination Technologies
  2509. 4.1.3 Survey of Applied Decontamination Techniques
  2510. 4.2 Decontamination of Segmented Components
  2511. 4.2.1 Overview
  2512. 4.2.2 Chemical Decontamination
  2513. Chemical Reagents
  2514. Spent Decontamination Solutions
  2515. Guidelines
  2516. 4.2.3 Electrochemical Decontamination
  2517. Chemical Reagents
  2518. Secondary-Waste Generation
  2519. Guidelines
  2520. 4.2.4 Mechanical Decontamination
  2521. Abrasive-Blasting Decontamination Systems
  2522. Abrasive Media Used
  2523. SecondaryWaste Generation
  2524. Guidelines
  2525. 4.2.5 Decontamination by Melting
  2526. Current Melting Practices
  2527. Advantages ofMelting as a Decontamination Technique
  2528. 4.2.6 Other Decontamination Techniques
  2529. 4.3 Decontamination of Building Surfaces
  2530. 4.3.1 Overview
  2531. 4.3.2 Basic Techniques
  2532. 4.3.3 Scarifying
  2533. Needle Scaling
  2534. Scabbling
  2535. Concrete Shaving
  2536. Hydraulic/Pneumatic Hammering
  2537. Dust Collection
  2538. Production Rates
  2539. 4.3.4 Guidelines
  2540. 4.4 Chemical Decontamination Techniques
  2541. 4.4.1 Overview
  2542. 4.4.2 Water/Steam
  2543. 4.4.3 Strong Mineral Acids
  2544. Hydrochloric Acid
  2545. Nitric Acid
  2546. Sulfuric Acid
  2547. Phosphoric Acid
  2548. 4.4.4 Acid Solutions
  2549. 4.4.5 Organic/Weak Acids
  2550. Oxalic Acid
  2551. Oxalate Peroxide
  2552. Citric Acid
  2553. Sulfamic Acid
  2554. 4.4.6 Alkaline Solutions
  2555. 4.4.7 Complexing Agents
  2556. 4.4.8 Oxidizing and Reducing (REDOX) Agents
  2557. Alkaline Permanganate
  2558. Low Oxidation-StateMetal Ion (LOMI)
  2559. Electrochemical Low Oxidation-StateMetal Ion Exchange (ELOMIX)
  2560. DECOHA Process
  2561. Chemical Oxidation Reduction Decontamination (CORD)
  2562. Pressurized Water Reactor Oxidative Decontamination (POD)
  2563. Bleaching
  2564. Detergents and Surfactants
  2565. 4.4.9 Organic Solvents
  2566. 4.4.10 Multiphase Treatment Processes
  2567. Alkaline Permanganate Processing
  2568. Foam Decontamination
  2569. Chemical Gels
  2570. 4.4.11 Selection of Chemical Decontamination Processes
  2571. 4.5 Mechanical Decontamination Techniques
  2572. 4.5.1 Overview
  2573. 4.5.2 Water Flushing
  2574. 4.5.3 Dusting/Vacuuming/Wiping/Scrubbing
  2575. 4.5.4 Steam Cleaning
  2576. 4.5.5 CO2: Blasting
  2577. 4.5.6 Wet-Ice Blasting
  2578. 4.5.7 Hydroblasting
  2579. 4.5.8 Ultra-High-Pressure Water
  2580. 4.5.9 Shot Blasting
  2581. 4.5.10 Wet Abrasive Cleaning
  2582. 4.5.11 Grit Blasting
  2583. 4.5.12 Grinding
  2584. 4.5.13 Scarifiers
  2585. Scabbling
  2586. Needle Scaling
  2587. Applications
  2588. 4.5.14 Milling
  2589. 4.5.15 Drill and Spall
  2590. 4.5.16 Paving Breaker and Chipping Hammer
  2591. 4.5.17 Expansive Grout
  2592. 4.5.18 Asbestos Removal
  2593. 4.6 Other Decontamination Techniques
  2594. 4.6.1 Electropolishing
  2595. Description of Technique
  2596. Electrolytes
  2597. H3PO4: Electrolytes
  2598. HNO3: Electrolytes
  2599. Organic Acid Electrolytes
  2600. Applications
  2601. 4.6.2 Ultrasonic Cleaning
  2602. 4.6.3 Vibratory Finishing*6pt
  2603. 5: Cutting and Dismantling Techniques
  2604. 5.1 Overview
  2605. 5.2 Thermal Cutting Techniques
  2606. 5.2.1 Gas Processes
  2607. Powder Injection Flame Cutting
  2608. Flame Cutting
  2609. Flame Gouging
  2610. Oxygen Lance Cutting
  2611. 5.2.2 Arc Processes
  2612. Oxy-Arc Cutting
  2613. Consumable Electrode Oxygen Jet Cutting
  2614. Consumable Electrode Water Jet Cutting
  2615. Contact ArcMetal Cutting
  2616. Electrical Discharge Machining
  2617. Arc-Saw Cutting
  2618. Consumable Electrode Water Jet Gouging
  2619. 5.2.3 Plasma-Arc Processes
  2620. Plasma-Arc Cutting with Single Torch
  2621. Plasma Compass Saw Cutting and Plasma Circular Saw Cutting
  2622. Plasma Compass Saw
  2623. Plasma Circular Saw
  2624. Plasma-Arc Gouging
  2625. 5.2.4 Laser Cutting
  2626. 5.2.5 Combined Cutting Processes
  2627. Consumable Electrode Water Jet Gouging/Flame Cutting
  2628. Plasma Arc Gouging/Flame Cutting
  2629. 5.3 Hydraulic Cutting Techniques
  2630. 5.3.1 High Pressure Water Jet Cutting
  2631. 5.3.2 Abrasive Water Jet Cutting
  2632. 5.4 Mechanical Dismantling Techniques
  2633. 5.4.1 Grinder
  2634. 5.4.2 Hacksaw and Guillotine Saw
  2635. 5.4.3 Shears
  2636. 5.4.4 Milling Cutters and Orbital Cutters
  2637. 5.4.5 Knurl Tube Cutter
  2638. 5.4.6 Diamond Saws and Cables
  2639. Diamond Saws
  2640. Diamond Cables
  2641. 5.5 Conclusions
  2642. 6: Remote Control Techniques
  2643. 6.1 Basis of Remote Operation
  2644. 6.1.1 Overview
  2645. 6.1.2 Safety Enhancement
  2646. 6.1.3 Cost Reduction
  2647. 6.1.4 Productivity Improvement
  2648. 6.1.5 Utilization of Facility Resources
  2649. 6.1.6 Accessibility
  2650. 6.1.7 Disadvantages of Remote Operation
  2651. 6.2 Remote Operation Technologies
  2652. 6.2.1 Overview
  2653. 6.2.2 Detection Equipment
  2654. Cameras and Lights
  2655. Other Detectors
  2656. 6.2.3 Segmenting and Demolishing Equipment
  2657. 6.2.4 Decontamination Equipment
  2658. 6.2.5 Material-Handling Equipment
  2659. 6.2.6 Sampling Equipment
  2660. 6.2.7 Hand-Held Equipment
  2661. 6.3 Remote-System Configurations
  2662. 6.3.1 Overview
  2663. 6.3.2 Control Stations
  2664. Teleoperator Control Stations
  2665. Teleoperator Managed Stations
  2666. Automated Stations
  2667. 6.3.3 Communication and Power Links
  2668. 6.3.4 Support Platforms
  2669. 6.3.5 Arms
  2670. Existing Equipment
  2671. Robots
  2672. Speciality Systems
  2673. 6.3.6 End Effectors and Tools
  2674. 6.4 Illustrative Experiences with Remote Applications
  2675. 6.4.1 Detection Equipment
  2676. 6.4.2 Sampling Equipment
  2677. 6.4.3 Hand-Held Equipment
  2678. 6.4.4 Miscellaneous Equipment
  2679. 7: Spent-Fuel and Waste Management
  2680. 7.1 Spent-Fuel Interim Storage
  2681. 7.1.1 Wet Interim Storage
  2682. Pool Re-Racking
  2683. Spent-Fuel Consolidation
  2684. Independent Wet Storage Pool
  2685. 7.1.2 Dry Interim Storage
  2686. Metal Casks
  2687. Vaults
  2688. Concrete Casks
  2689. Concrete Silos
  2690. NUHOMS Modular System
  2691. 7.2 Waste Management
  2692. 7.2.1 Overview
  2693. 7.2.2 Clearance Levels
  2694. 7.2.3 Waste-Management Strategy
  2695. 7.2.4 Waste-Management Arrangements
  2696. 7.2.5 Treatment and Conditioning of Liquid Wastes
  2697. 7.2.6 Treatment and Conditioning of Solid Wastes
  2698. 7.2.7 Treatment and Conditioning of Gaseous and Aerosol Wastes
  2699. 7.2.8 Packaging and Storing Technologies
  2700. 7.2.9 Waste Transport
  2701. 7.2.10 Waste Characterization and Measurement Techniques
  2702. CharacterizationMethods
  2703. Gross Gamma Measurement
  2704. Gamma Spectrum Analysis
  2705. Energy-Sensitive Detectors
  2706. Instrumentation
  2707. Gas Filled Detectors
  2708. Scintillation Detectors
  2709. Solid-State Detectors
  2710. Special Alpha Techniques
  2711. Waste Characterization Program
  2712. 7.3 The Waste Management Facility (WMF)
  2713. 7.3.1 WMF Design Criteria
  2714. 7.3.2 Description of the Areas and the Equipment
  2715. Segmentation
  2716. Decontamination
  2717. Volume Reduction
  2718. Immobilization by Grouting
  2719. Monitoring, Characterization and Release
  2720. Interim Storage Areas (Buffers)
  2721. 7.3.3 Staff Requirements
  2722. 8: Safety, Health and Environmental Protection
  2723. 8.1 Overview
  2724. 8.2 Safety Culture
  2725. 8.3 Safety Assessment
  2726. 8.3.1 Accident Analysis
  2727. 8.3.2 Human Factors and Organizational Considerations
  2728. 8.3.3 Emergency Planning
  2729. 8.4 Environmental Impact Assessment (EIA)
  2730. 8.4.1 Scoping
  2731. 8.4.2 Environmental Impact Evaluation
  2732. 8.4.3 EIA Regulations
  2733. 8.4.4 Consent Processes for Decommissioning in EU Member States
  2734. 8.4.5 Consultation and Public Participation
  2735. 8.4.6 Definition of Preferred Options
  2736. 8.4.7 Baseline Description
  2737. Impact Factors Relating to the Natural Environment
  2738. Identification of Potential Impacts
  2739. 8.4.8 Impact Assessment
  2740. Impact Indicators
  2741. Radiological Impacts
  2742. Noise and Vibrations
  2743. Air Quality
  2744. Land Use
  2745. Results of Assessment
  2746. 8.4.9 Mitigation Measures
  2747. Identification ofMitigationMeasures
  2748. Final Impact
  2749. 8.4.10 Environmental Surveillance Program
  2750. 9: Decommissioning Cost Evaluation
  2751. 9.1 Cost Evaluation Methodologies
  2752. 9.2 Account Presentation
  2753. 9.3 Responsibilities and Financing
  2754. 9.4 Standard Criteria for Cost Evaluation
  2755. 9.5 Cost Evaluations
  2756. 9.5.1 Overview
  2757. 9.5.2 Cost-Assessment Methods
  2758. 9.6 Cost Calculation Model Example
  2759. 9.6.1 Cost-Breakdown Structure
  2760. 9.6.2 Mass Analysis
  2761. Primary Masses
  2762. Secondary Masses
  2763. TertiaryMasses
  2764. 9.6.3 Calculation of Decommissioning Activities
  2765. Decommissioning Cost
  2766. Employable Technology
  2767. Necessary Tools and Equipment
  2768. Other Articles of Consumption
  2769. Required Manpower and Duration
  2770. Expected Personnel Radiation Exposure
  2771. 9.7 International Comparisons
  2772. 9.7.1 Overview
  2773. 9.7.2 Variations in Cost Estimates
  2774. 9.7.3 Cost Estimates in the USA
  2775. 9.7.4 Cost Estimates in Europe
  2776. 10: International Organizations Roles
  2777. 10.1 UNO-IAEA (United Nations Organization-International Atomic EnergyAgency)
  2778. 10.2 OECD-NEA (Organization for Economic Cooperation andDevelopment)
  2779. 10.3 EC (European Commission)
  2780. 10.4 WANO (World Association of Nuclear Operators)
  2781. 10.5 WENRA (West European Nuclear Regulator Association)
  2782. References
  2783. UNO-IAEA Documents
  2784. OECD-NEA Documents
  2785. EU Documents
  2786. US-NRC Documents
  2787. Further Reading
  2788. Other Organizations
  2789. Other Documents
  2790. 28: The Scientific Basis of Nuclear Waste Management
  2791. 1: Generalities on Waste
  2792. Definitions
  2793. 1.1 Origin, Nature, Volume, and Flux of Waste
  2794. 1.1.1 Waste Classification
  2795. 1.1.2 Volume and Flux of Waste
  2796. 1.1.3 Which Radionuclides in the Spent Fuel?
  2797. 1.1.4 Fission Products Are Radioactive
  2798. 1.1.5 Formation of Transuranic Isotopes in the Reactor Core
  2799. 1.1.6 Radioactive Decay
  2800. 1.1.7 What Kind of Radioactive Emission Do We Expect from theNuclear Waste?
  2801. 1.1.8 Penetration of Ionizing Radiations into Matter
  2802. 1.1.9 The Radioactive Half-Life of the Main Radionuclides Found inNuclear Waste
  2803. 1.1.10 Radioactive Waste: How Dangerous Is It?
  2804. 1.2 Management Options: An Overview
  2805. 1.2.1 Dispersion or Concentration?
  2806. 1.2.2 Waste, Effluents, Decontamination, and Conditioning: A SystemicVision
  2807. 1.2.3 Reprocessing or Not Reprocessing?
  2808. 1.2.4 World Situation for Waste Management
  2809. 1.2.5 The Institutions In Charge of Waste Management in the World
  2810. 1.2.6 The Waste Management Process
  2811. 1.2.7 Uranium Mine Tailing Management
  2812. 1.2.8 Management of Low and Intermediate Level, Short-LivedWaste (LIL-SL)
  2813. 1.2.9 Interim Storage of Spent Fuel
  2814. 1.2.10 High Activity Waste from Reprocessing is Vitrified
  2815. 1.2.11 Options for the Management of Long-Lived Nuclear Waste
  2816. Partitioning and Transmutation
  2817. Conditioning
  2818. Interim Storage
  2819. Deep Geological Disposal
  2820. 1.2.12 Waste Management and Radioprotection
  2821. 1.2.13 From Radioactivity to Radiotoxicity
  2822. 1.2.14 Ingestion Dose Factors
  2823. 1.2.15 The Long-Term Radiotoxicity of Spent Fuel
  2824. 1.2.16 Deep Geological Disposal: The Multibarrier Concept
  2825. 2: Waste Conditioning
  2826. 2.1 Conditioning of LL and IL Waste in Cement-Based Matrices
  2827. 2.1.1 Elaboration of Cement-Based Materials
  2828. 2.1.2 Waste Conditioning in Cement-Based Materials
  2829. 2.1.3 Long-Term Behavior of Cement-Based Materials
  2830. 2.1.4 R&D on Cement-Based Materials for Waste Conditioning
  2831. 2.1.5 Waste Container Manufacturing
  2832. 2.2 Conditioning of HL-LL Waste in Glass
  2833. 2.2.1 Vitrification of Solutions of Fission Products
  2834. 2.2.2 Requirements for the Glass Material
  2835. 2.2.3 Physicochemistry of Glass
  2836. 2.2.4 Glass Composition
  2837. 2.2.5 Incorporation of Radionuclides in Glass: Where Is the Limit?
  2838. 2.2.6 Glass Fabrication: The Hot Crucible Vitrification Process
  2839. 2.2.7 The Vitrified Waste Package
  2840. 2.2.8 Cold Crucible Vitrification
  2841. 2.2.9 Long-Term Behavior of Glass
  2842. 2.2.10 Long-Term Behavior of Glass in Contact with Water
  2843. 2.2.11 Phenomenology of Glass Alteration by Water
  2844. 2.2.12 Glass Alteration by Water Depends Greatly on Temperature
  2845. 2.2.13 Toward a Model of Glass Alteration
  2846. Hypotheses
  2847. 2.2.14 The Residual Alteration Regime of Glass
  2848. 2.2.15 Long-Term Behavior of Glass: The Effect of Self-Irradiation
  2849. 2.3 Other Conditionings for Waste
  2850. 2.3.1 Bituminization of Low- or Intermediate-Level Waste
  2851. 2.3.2 Bitumen Manufacturing
  2852. 2.3.3 Bitumen Package Evolution Under Self-Irradiation
  2853. 2.3.4 Bitumen Alteration by Water
  2854. 2.3.5 Conditioning of Fuel Claddings and End Caps
  2855. 2.3.6 The Long-Term Behavior of the Compacted Metallic Waste Package
  2856. 2.3.7 Melting: A Possible Future Conditioning for Metallic Waste
  2857. 2.3.8 Specific Conditioning for Minor Actinides and Fission Products
  2858. 2.4 Conditioning of Spent Fuel
  2859. 2.4.1 Can Spent Fuel Be a Conditioning Matrix?
  2860. 2.4.2 Spent Fuel Evolution After Unloading
  2861. 2.4.3 Packaging Spent Fuel
  2862. 2.4.4 Choice of the Container Material
  2863. 2.4.5 Corrosion Rates of Low-Alloyed Steels
  2864. 2.4.6 Post-Irradiation State of the Spent Fuel
  2865. Irradiated Clad State
  2866. Post-Irradiation Physical State of Spent Fuel Pellet
  2867. 2.4.7 Fuel Evolution in a Closed System
  2868. 2.4.8 Spent Fuel in a Water-Saturated Repository
  2869. 2.4.9 Conclusion on the Storage and Direct Disposal of Spent Fuel*6pt
  2870. 3: Waste Storage and Disposal
  2871. 3.1 Interim Storage of Long-Lived Waste and Spent Fuel
  2872. 3.1.1 Storage: A Temporary Solution for Waste Management
  2873. 3.1.2 An Important Stake of Interim Storage: Reduce the Cost of the Disposal
  2874. 3.1.3 The Objects To Be Stored
  2875. 3.1.4 The Storage Facilities for Long-Lived Waste
  2876. 3.1.5 Duration of the Interim Storage
  2877. 3.2 Geological Disposal
  2878. 3.2.1 The General Principles of Deep Geological Disposal
  2879. 3.2.2 The Technical Principles of Deep Geological Disposal
  2880. 3.2.3 The Multibarrier Concept
  2881. 3.2.4 Repository Lifetime
  2882. 3.2.5 Repository Architecture
  2883. Dimensions of a High-Level Repository
  2884. 3.2.6 Cost of an HL LL Waste Repository
  2885. 3.2.7 The Foreseen Evolution of a Repository
  2886. The First One Thousand Years
  2887. 10,000 Years On and More
  2888. Millions of Years On
  2889. 3.2.8 Geodynamic Evolution of a Deep Geological Repository
  2890. 3.2.9 The Criteria for the Choice of a Suitable Location for a DeepGeological Repository
  2891. 3.2.10 Choice of the Host Rock for the Waste Disposal
  2892. 3.2.11 Hydrogeology
  2893. 3.2.12 Calculation of Water Flow in a Permeable Porous Medium
  2894. 3.2.13 Radionuclide Migration
  2895. 3.2.14 Kinematic Dispersion
  2896. 3.2.15 The Tracer Equation
  2897. 3.2.16 Characteristic Migration Time Through a Geological Barrier
  2898. 3.2.17 Sorption of a Non-Perfect Tracer
  2899. 3.2.18 Migration of a Sorbing Tracer
  2900. 3.2.19 Migration of Actinides
  2901. 3.2.20 Radionuclide Speciation and Solubility Limits
  2902. 3.2.21 Porewater Chemistry
  2903. 3.2.22 How to Evaluate the Transport of RN Underground
  2904. 3.2.23 Validation of the Models of RN Transport Underground
  2905. 3.2.24 Thermo-Hydro Mechanico-Chemical Effects in the Near-Fieldof a Geological Repository
  2906. 3.2.25 Thermal Behavior of High-Activity Waste
  2907. 3.2.26 Chemical Phenomena in the Near-Field
  2908. Redox Front Propagation
  2909. Dissolution–Precipitation
  2910. Corrosion
  2911. 3.2.27 Mechanical Behavior of a Repository
  2912. 3.2.28 Mechanical Effects Due to the Excavation of the Galleries
  2913. 3.2.29 Hydraulic Effects
  2914. 3.2.30 Hydro-Mechanical Effects in the Near-Field
  2915. 3.2.31 Hydro-Chemical Couplings in the Near-Field
  2916. 3.2.32 Gas Production and Release in an Underground Repository:An Example of H–M–C Coupling
  2917. 3.2.33 Underground Laboratories
  2918. 3.2.34 Natural Analogues Can Help Validate the Models of Long-TermBehavior of a Repository: The Example of Oklo
  2919. 3.3 Safety of Waste Disposal Facilities
  2920. 3.3.1 How to Evaluate the Radiological Impact of a Deep GeologicalRepository?
  2921. 3.3.2 Evaluation of the Order of Magnitude of the Activity at the Exutory fora Simplified Repository
  2922. 3.3.3 The Source-Term
  2923. 3.3.4 Transit Time from the Repository to the Exutory
  2924. 3.3.5 Transfer Through the Geosphere
  2925. 3.3.6 Activity at the Exutory
  2926. 3.3.7 Evaluation of the Order of Magnitude of the Dose to Man
  2927. 4: Conclusions
  2928. 4.1 Waste: The Achilles' Heel of the Nuclear Industry?
  2929. 4.2 Technical Solutions and Political Advances for Waste Management
  2930. 4.3 The Main Principles of Nuclear Waste Management
  2931. 4.4 Recycling: The First Link of the Waste Management Chain
  2932. 4.5 Transmute, Recycle: Where Is the Limit?
  2933. 4.6 Waste Conditioning: The Essential Second Link in the Chain ofWaste Management
  2934. 4.7 What To Do with the Final Waste?
  2935. 4.8 Interim Storage, A Temporary Solution That Gives Flexibility tothe Management of Waste
  2936. 4.9 Underground Disposal, The Last Link of the Chain: A Final Placefor the Final Waste
  2937. 4.10 Underground Disposal: A Simple and Robust Concept
  2938. 4.11 Let Us Behave Responsibly, Let Us Try To Be Sensible
  2939. 5: Glossary
  2940. References
  2941. 29: Proliferation Resistance and Safeguards
  2942. 1: Proliferation Resistance
  2943. 1.1 Material Attractiveness
  2944. 1.1.1 Figure of Merit
  2945. 1.1.2 Meaning of FOM Values
  2946. 1.1.3 Comparison of Various Reprocessing Schemes
  2947. 1.1.4 Conclusions
  2948. 1.2 Nonproliferation Impact Assessments
  2949. 1.2.1 Methodology
  2950. 1.2.2 Technical Factors and Metrics
  2951. 1.2.3 Policy Factors and Grading
  2952. 1.2.4 PR&PP Example
  2953. 2: Safeguards
  2954. 2.1 Domestic Safeguards: Implementing a State System ofAccounting and Control (SSAC)
  2955. 2.1.1 Primary Features of an SSAC
  2956. 2.2 IAEA Inspection Regime
  2957. 2.2.1 Timeliness Goals
  2958. 2.2.2 Quantity Goals
  2959. 2.2.3 Deterrence by Risk of Early Detection
  2960. 2.2.4 Frequency of Inspection to Fulfill Technical Objectives of Safeguards
  2961. 2.2.5 IAEA Nuclear Facility Categories
  2962. 2.2.6 Keystones of Bookkeeping, Material Accountancy, andContainment and Surveillance
  2963. 2.2.7 Strengthened Safeguards
  2964. 2.3 Safeguards Design
  2965. 2.3.1 Safeguards Requirements
  2966. 2.3.2 Safeguards by Design
  2967. 2.4 Unattended Monitoring
  2968. 2.4.1 Background
  2969. 2.4.2 Definition of an Unattended Monitoring System (UMS)
  2970. 2.4.3 Why Does the IAEA Use UMS?
  2971. 2.4.4 Benefits of UMS
  2972. 2.4.5 Key to Maintaining a Balanced Approach in IAEA Safeguards
  2973. 2.4.6 Major Cost Drivers in the Department of Safeguards
  2974. 2.4.7 Primary Goals of UMS
  2975. 2.4.8 Method of Obtaining Primary Goals
  2976. 2.4.9 Conclusion
  2977. 2.5 Process Monitoring
  2978. 2.5.1 Key Elements
  2979. 2.5.2 Role of Models and Simulation
  2980. 2.5.3 Strategy for Reprocessing Plants
  2981. 2.5.4 Operational Evaluation Systems
  2982. 2.6 Environmental Sampling
  2983. 2.6.1 Basic Principles of Environmental Sampling
  2984. 2.6.2 Sampling Methods
  2985. 2.6.3 Bulk Measurements of Dust Samples
  2986. 2.6.4 Particle Measurements of Dust Samples
  2987. 2.7 Forensics
  2988. 2.7.1 Methodology
  2989. 2.7.2 Characteristic Parameters in Nuclear Forensic Investigations
  2990. 2.7.3 Data Interpretation and Attribution
  2991. 2.7.4 Conclusions
  2992. 2.8 Statistics for Accountancy
  2993. 2.8.1 Background
  2994. 2.8.2 Measurement Error Models
  2995. 2.8.3 Propagation of Variance
  2996. 2.8.4 Sequential or Trend Testing
  2997. 2.8.5 ID Test
  2998. 2.8.6 SITMUF Test
  2999. 2.8.7 Verifying Declarations
  3000. 2.8.8 Other Purposes of the PI
  3001. 2.8.9 Sampling
  3002. 2.8.10 Difficulties with ID Evaluation
  3003. 2.8.11 Solution Monitoring
  3004. 2.8.12 Conclusions
  3005. 2.9 Accountancy for Abrupt Diversion
  3006. References
  3007. Website
  3008. Index
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement