MatsGranvik

period lengths in summatory von Mangoldt function matrix

Jul 29th, 2020
262
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.53 KB | None | 0 0
  1. (*start*)
  2. Clear[a, b, f, p];
  3. nn = 600;
  4. f[n_] := n;
  5. a[n_] := DivisorSum[n, MoebiusMu[#] # &];
  6. Monitor[TableForm[
  7. A = Accumulate[
  8. Table[Table[a[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]];, n]
  9. Table[
  10. n = row;
  11. first = Table[Table[A[[n, k]], {k, 1, kk}], {kk, 1, nn/2}];
  12. further = Table[Table[A[[n, k]], {k, kk + 1, 2*kk}], {kk, 1, nn/2}];
  13. differences = first - further;
  14. numberOfZeros =
  15. Table[n - Count[differences[[n]], 0], {n, 1, Length[differences]}];
  16. First[Flatten[Position[numberOfZeros, 0]]], {row, 1, 10}]
  17. (*end*)
  18.  
  19. {1, 2, 6, 6, 30, 30, 210, 210, 210, 210}
  20. which apparently are the primorial numbers.
  21.  
  22. (*start*)
  23. Clear[a, b, f, p];
  24. nn = 600;
  25. f[n_] := n;
  26. a[n_] := DivisorSum[n, MoebiusMu[#] # &];
  27. Monitor[TableForm[
  28. A = Accumulate[
  29. Table[Table[a[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]];, n]
  30. A = Transpose[A];
  31. Table[
  32. n = row;
  33. first = Table[Table[A[[n, k]], {k, 1, kk}], {kk, 1, nn/2}];
  34. further = Table[Table[A[[n, k]], {k, kk + 1, 2*kk}], {kk, 1, nn/2}];
  35. differences = first - further;
  36. numberOfZeros =
  37. Table[n - Count[differences[[n]], 0], {n, 1, Length[differences]}];
  38. First[Flatten[Position[numberOfZeros, 0]]], {row, 2, 70}]
  39. (*end*)
  40.  
  41. Period lengths of columns are not found in the OEIS:
  42. {2, 3, 2, 5, 6, 7, 2, 3, 2, 11, 6, 13, 2, 15, 2, 17, 6, 19, 2, 3, 2, \
  43. 23, 6, 5, 2, 3, 2, 29, 30, 31, 2, 3, 2, 35, 6, 37, 2, 3, 2, 41, 42, \
  44. 43, 2, 15, 2, 47, 6, 7, 2, 3, 2, 53, 6, 5, 2, 3, 2, 59, 30, 61, 2, 3, \
  45. 2, 5, 66, 67, 2, 3, 2}
  46. Although there is a near match but it begins to differ at n=42.
  47.  
Advertisement
Add Comment
Please, Sign In to add comment