Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (*start*)
- Clear[a, b, f, p];
- nn = 600;
- f[n_] := n;
- a[n_] := DivisorSum[n, MoebiusMu[#] # &];
- Monitor[TableForm[
- A = Accumulate[
- Table[Table[a[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]];, n]
- Table[
- n = row;
- first = Table[Table[A[[n, k]], {k, 1, kk}], {kk, 1, nn/2}];
- further = Table[Table[A[[n, k]], {k, kk + 1, 2*kk}], {kk, 1, nn/2}];
- differences = first - further;
- numberOfZeros =
- Table[n - Count[differences[[n]], 0], {n, 1, Length[differences]}];
- First[Flatten[Position[numberOfZeros, 0]]], {row, 1, 10}]
- (*end*)
- {1, 2, 6, 6, 30, 30, 210, 210, 210, 210}
- which apparently are the primorial numbers.
- (*start*)
- Clear[a, b, f, p];
- nn = 600;
- f[n_] := n;
- a[n_] := DivisorSum[n, MoebiusMu[#] # &];
- Monitor[TableForm[
- A = Accumulate[
- Table[Table[a[GCD[n, k]], {k, 1, nn}], {n, 1, nn}]]];, n]
- A = Transpose[A];
- Table[
- n = row;
- first = Table[Table[A[[n, k]], {k, 1, kk}], {kk, 1, nn/2}];
- further = Table[Table[A[[n, k]], {k, kk + 1, 2*kk}], {kk, 1, nn/2}];
- differences = first - further;
- numberOfZeros =
- Table[n - Count[differences[[n]], 0], {n, 1, Length[differences]}];
- First[Flatten[Position[numberOfZeros, 0]]], {row, 2, 70}]
- (*end*)
- Period lengths of columns are not found in the OEIS:
- {2, 3, 2, 5, 6, 7, 2, 3, 2, 11, 6, 13, 2, 15, 2, 17, 6, 19, 2, 3, 2, \
- 23, 6, 5, 2, 3, 2, 29, 30, 31, 2, 3, 2, 35, 6, 37, 2, 3, 2, 41, 42, \
- 43, 2, 15, 2, 47, 6, 7, 2, 3, 2, 53, 6, 5, 2, 3, 2, 59, 30, 61, 2, 3, \
- 2, 5, 66, 67, 2, 3, 2}
- Although there is a near match but it begins to differ at n=42.
Advertisement
Add Comment
Please, Sign In to add comment