Advertisement
Guest User

Untitled

a guest
May 22nd, 2019
64
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 4.75 KB | None | 0 0
  1. \section{Motivation}
  2. \begin{frame}{Motivation}
  3. \begin{itemize}
  4. \item $A\in \K^{n\times n}$ self-adjoint, $\K\in \{\R, \C\}$.
  5. \item Assume that $n$ is very large.
  6. \item Can we get a handle on $m<n$ Eigenvalues of $A$ without having to calculate all of them?
  7. \end{itemize}
  8. \begin{center}
  9. \textbf{Reduce the dimension of the problem}
  10. \end{center}
  11. \end{frame}
  12.  
  13.  
  14.  
  15.  
  16. \section{The Rayleigh-Ritz procedure}
  17. \subsection{Theoretical background}
  18.  
  19. % \begin{frame}
  20. % \begin{thm}\label{0.1}
  21. % Let $A\in \K^{n \times n}$ be a self-adjoint matrix with
  22. % eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$ and denote by
  23. % $X_i$ the set of all $i$-dimensional subspaces of $\K^n$ for
  24. % $i=1, \ldots, n$. Then, we have:
  25. % $$\lambda_i = \min_{X^i\subseteq \K^n} \max_{x\in X^i\atop x\neq 0} \frac{\langle x,Ax\rangle }{\langle x,x\rangle},$$
  26. % where $\langle \cdot, \cdot \rangle$ denotes the
  27. % Euclidian inner producut and the superscript the dimension of a
  28. % subspace.
  29. %\end{thm}
  30. %We hope to get a good approximation of $\lambda_i$, if we replace
  31. % $\K^n$ by a subspace $U\subseteq \K^n$.
  32. % \end{frame}
  33. \begin{frame}{Characterization of eigenvectors as invariant subspaces}
  34.  
  35. \begin{df}
  36. A subspace $U\subseteq \mathbb{K}^n$ is called ``invariant'' under
  37. the operation of $A$, if
  38. \[
  39. Au \in U, \quad \forall u \in U .
  40. \]
  41. \end{df}
  42. \pause
  43. \begin{thm}\label{1.2}
  44. A subspace $U\subseteq \mathbb{K}^n$ is invariant under the
  45. operation of $A$ if, and only if, it has a basis of eigenvectors
  46. of $A$.
  47. \end{thm}
  48. \pause
  49. \begin{center}
  50. Finding eigenvalues of a symmetric matrix $\Leftrightarrow$
  51. finding invariant subspaces \note{Elaborate on how the invariant
  52. subspaces actually determine the eigenpairs}
  53. \end{center}
  54.  
  55. \end{frame}
  56. \begin{frame}
  57. Let $q_1, \ldots, q_k$ form an orthonormal basis of
  58. $U=\text{span}(q_1, \ldots, q_k)$.
  59. \begin{align*}
  60. U \text{ invariant } &\Leftrightarrow Aq_j = \sum_{i=1}^k q_i c_{ij} , \, \forall j=1, \ldots, k \\
  61. &\Leftrightarrow R(C):=AQ-QC = 0, \, C\in \K^{\color{red}{k\times k}}, \, Q=(q_1, \ldots, q_k)
  62. \end{align*}
  63. \begin{itemize}
  64. \item Unique solution $C=Q^* AQ$.
  65. \item Obtain an approximation of the eigenvalues of $A$ from $C$!
  66. \end{itemize}
  67. \end{frame}
  68. \begin{frame}
  69. \begin{block}{Eigenvalues}
  70. If $\lambda$ is an eigenvalue of $C=Q^*AQ$ with eigenvector $y$, we have
  71. \[
  72. AQy = QCy = Q\lambda y = \lambda Qy \,.
  73. \]
  74. So $Qy$ determines an eigenvector of $A$ with the same eigenvalue.
  75. \end{block}
  76. Justify: If $U$ is not invariant, we still get a good approximation
  77. with the eigenvalues of $C$.
  78. \end{frame}
  79. \begin{frame}{Remark:}
  80. \begin{thm}\label{0.1}
  81. Let $A\in \K^{n \times n}$ be a self-adjoint matrix with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$. Then, we have:
  82. $$\lambda_i = \min_{X^i\subseteq \K^n} \max_{x\in X^i\atop x\neq 0} \frac{\langle x,Ax\rangle }{\langle x,x\rangle},$$
  83. where $\langle \cdot, \cdot \rangle$ denotes the Euclidian inner producut and the superscript the dimension of a subspace.
  84. \end{thm}
  85.  
  86.  
  87. \end{frame}
  88. \begin{frame}
  89. \begin{thm}\label{1.5}
  90. Let $Q$ be an orthonormal basis of a subspace $U\subseteq
  91. \K^n$. We then have:
  92. \[
  93. \min_{X^j\subseteq U} \max_{x\in X^j\atop x\neq 0} \frac{\langle
  94. x,Ax\rangle }{\langle x,x\rangle} = \lambda_j[Q^*AQ] \,,
  95. \]
  96. where the latter denotes the $j$-th eigenvalue of $Q^*AQ$.
  97. \end{thm}
  98. \begin{thm}\label{1.4}
  99. Let $R(B) = AQ-QB$ be the residual matrix, $\lVert \cdot \rVert$
  100. the spectral norm. For a given $n$-by-$m$ $Q$ and $C=Q^*AQ$, we
  101. have:
  102. \[
  103. R(C) \leq R(B), \quad \forall B \in \K^{m \times m}\,.
  104. \]
  105. \end{thm}
  106. \end{frame}
  107.  
  108. \subsection{The algorithm}
  109. \algrenewcommand\algorithmicrequire{\textbf{Input:}}
  110. \algrenewcommand\algorithmicensure{\textbf{Output:}}
  111. \begin{frame}
  112. \begin{algorithmic}[1]
  113. \Require $n \times m$ full rank matrix $F$; columns form basis of $U$
  114. \item[]
  115. \State Orthonormalize columns of $F$ to compute $Q$
  116. \State $C = Q^\ast A Q$ \Comment{Matrix Rayleigh quotient of $Q$}
  117. \State Compute the eigenpairs of $C$: $(g_i, \theta_i)$ \Comment{$\theta$: Ritz values}
  118. \State Compute $y_i = Q g_i$ \Comment{Ritz vectors}
  119. \State $r_i = Ay_i - y_i \theta_i = AQg_i - y_i \theta_i$ and
  120. $\lVert r_i\rVert$ \Comment{Compute error bounds}
  121. \item[]
  122. \Ensure
  123. \begin{itemize}
  124. \item[]
  125. \item Best set of approx. eigenpairs of $A$, which can be obtained
  126. from $U$
  127. \item Ritz intervals
  128. $[\theta_i - \norm{r_i}, \theta_i + \norm{r_i}]$, each of which
  129. contain an eigenvalue of $A$
  130. \end{itemize}
  131. \note{Ideally, they are disjoint}
  132. \end{algorithmic}
  133. \end{frame}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement