Need a unique gift idea?
A Pastebin account makes a great Christmas gift
SHARE
TWEET

Untitled

a guest Nov 13th, 2018 93 Never
Upgrade to PRO!
ENDING IN00days00hours00mins00secs
 
  1. VHImpUmat.f:476:20:
  2.  
  3.   sv%Fm = get_Fm(T)                                                 !     $F_M(Tb)$ limit stress obliquity (depends on $theta$)
  4.                1
  5. Error: Return type mismatch of function ‘get_fm’ at (1) (UNKNOWN/REAL(8))
  6. AVHImpUmat.f:476:14:
  7.  
  8.   sv%Fm = get_Fm(T)                                                 !      $F_M(Tb)$ limit stress obliquity (depends on $theta$)
  9.           1
  10. Error: Function ‘get_fm’ at (1) has no IMPLICIT type
  11.    
  12. subroutine stiffness_and_derivatives(T,sv,mat,d,msg)
  13.   use tools_lt
  14.   use constitutive_names
  15.   implicit none
  16.   type (MATERIALCONSTANTS),intent(in) :: mat
  17.   type (STATEVARIABLES),intent(inout) :: sv
  18.   type (DERIVATIVES), intent(inout) :: d
  19.   type (MESSAGE),intent(inout) :: msg
  20.   character*40 :: whereIam
  21.   real(8), intent(in) :: T(3,3)
  22.   real(8), dimension(3,3,3,3,3,3) :: c,ctransp
  23.   real(8) :: trT3,fac
  24.  
  25.   sv%Fm = get_Fm(T)                                                 !   $F_M(Tb)$ limit stress obliquity (depends on $theta$)
  26.   sv%That = hated(T)                                                !    $hat {Tb} = Tb / tr Tb$
  27.   sv%LLhat= sv%Fm*sv%Fm*Idelta+mat%az2*(sv%That .out. sv%That)      !   linear hp stiffness $ hat{cE} = a^2 left[ left(Frac{F_M}{a}right)^2 cI + hTb hTb right] $
  28.   sv%LL   = -( sv%trT/(3.0d0*mat%Cs) )* sv%LLhat                    !   $ cE = frac{-trTb}{3 kappa} hat{cE}$
  29. !----- dLLhatdT ----------
  30.   trT3 = sv%trT**3                                                  !    $tr^3 Tb$
  31.   fac =  mat%az2 / trT3
  32.   c = (Idelta .out. T)                                              !   $c_{ijmnkl}= I_{ijmn}T_{kl}$
  33.   ctransp = tpose35i46(c)                                           !   $c^T= c_{ijklmn}$
  34.   d%dLLhatdT = fac * ( sv%trT*ctransp + sv%trT*(T .out. Idelta)
  35.  &              - 2.0d0*( T .out. ( T .out. delta) ) )              !    $ hat E_{ijklmn}'=a^2left(dfrac{ T_{rr} I_{ijmn}T_{kl} + T_{rr} T_{ij}I_{klmn}-2  T_{ij}T_{kl} delta_{mn} }{ (T_{rr})^3}    +  2 dfrac{F_M}{a} I_{ijkl}F'_{M, mn}  right)$
  36.                                                                     !    $F'_M approx 0$ is assumed
  37.   d%dLLdT = -(1.0d0/(3.0d0*mat%Cs) )*((sv%LLhat .out. delta)        !   $cE_{ }' = frac{-1}{3 kappa}  hatcE oneb + dfrac{-tr Tb}{3kappa}hatcE'$
  38.  &              + sv%trT*d%dLLhatdT )
  39. end subroutine stiffness_and_derivatives
  40.    
  41. real(8) :: get_fm
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
 
Top