Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- using Microsoft.ML;
- class Program
- {
- static void Main(string[] args)
- {
- MLContext mlContext = new MLContext();
- string dataPath = "filmy.csv";
- IDataView dataView = mlContext.Data.LoadFromTextFile<FilmData>(
- path: dataPath,
- hasHeader: true,
- separatorChar: ','
- );
- var pipeline = mlContext.Transforms.Categorical
- .OneHotEncoding(
- outputColumnName: "GatunekEncoded",
- inputColumnName: "Gatunek"
- ).Append(mlContext.Transforms.Concatenate(
- "Features",
- "GatunekEncoded"
- )).Append(mlContext.BinaryClassification.Trainers.SdcaLogisticRegression(
- labelColumnName: nameof(FilmData.Lubiany),
- featureColumnName: "Features"
- ));
- var model = pipeline.Fit(dataView);
- mlContext.Model.Save(model, dataView.Schema, "model.zip");
- System.Console.WriteLine("Model wytrenowany! 👌");
- var predEngine = mlContext.Model.CreatePredictionEngine<FilmData, FilmPrediction>(model);
- var nowyFilm = new FilmData
- {
- Tytul = "Testowy akcja",
- Gatunek = "Akcja"
- };
- var wynik = predEngine.Predict(nowyFilm);
- Console.WriteLine($"Czy film '{nowyFilm.Tytul}' będzie lubiany? {wynik.Prediction} (Score: {wynik.Score})");
- }
- }
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement