Advertisement
Guest User

Untitled

a guest
Jun 24th, 2019
72
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.38 KB | None | 0 0
  1. xff[g, mx, m[Psi]] = Quiet[Table[Re[x /. FindRoot[x - Log[(0.038*2*1.22*10^19*m[Psi]*sigv[x, g, mx, m[Psi]])/
  2. Sqrt[107*x]], {x, 25}]] /. {g -> matt[[i, 1]],
  3. mx -> matt[[i, 2]], m[Psi] -> matt[[i, 3]]}, {i, 1, 10000000}]]
  4.  
  5. replace1 = {me -> 0.0, mμ -> 0.0, mτ -> 0.0, md -> 0.0,
  6. ms -> 0.0, mb -> 0.0, mu -> 0.0, mc -> 0.0, mt -> 173.21,
  7. mW -> 80.385, mZ -> 91.188, vev -> 246, mh -> 125};
  8. replace = {me -> 0.000511, mμ -> 0.1057, mτ -> 1.777,
  9. md -> 0.0048, ms -> 0.095, mb -> 4.18, mu -> 0.0023, mc -> 1.275,
  10. mt -> 173.21, mW -> 80.385, mZ -> 91.188, vev -> 246, mh -> 125};
  11.  
  12. rulel = {nc -> 1, gfv -> 0, gfa -> -0.707 g};
  13. ruleU = {nc -> 3, gfv -> 0.884 g, gfa -> 0};
  14. ruleD = {nc -> 3, gfv -> 0.707 g, gfa -> 0};
  15. ruleN = {nc -> 1, gfv -> 0.354 g, gfa -> -0.354 g};
  16. rule1 = {gψa -> 1.7536718949856565` g, gψv -> 0};
  17. rule2 = {gψa -> 1.7536718949856565` g, gψv -> 0};
  18.  
  19. n1 = n4 = 1/Sqrt[2] // N;
  20. θ = 1;
  21. g1 = 5/8 (3 n1 + n4) g;
  22. g2 = 1/8 (3 n1 + n4) g;
  23.  
  24. g11 = g1*Cos[θ]^2 + g2*Sin[θ]^2;
  25. g22 = g2*Cos[θ]^2 + g1*Sin[θ]^2;
  26. g12 = g21 = Sin[2 θ]/2 (g1 - g2);
  27.  
  28. geff = 2 + 2 (1 + Δ)^(3/2) Exp[-x (Δ)];
  29.  
  30. (* Total Decay width of X: *)
  31. Γtt1[g_, mx_] = ((3*nc*mx)/(24*π) (1)^(1/2) (gfa^2 (1) + gfv^2 (1)) /. rulel) +
  32. ((3 nc*mx)/(24*π) (1)^(1/2) (gfa^2 (1) + gfv^2 (1)) /. ruleN) +
  33. ((3*nc*mx)/(24*π) (1)^(1/2) (gfa^2 (1) + gfv^2 (1)) /. ruleU) +
  34. ((3*nc*mx)/(24*π) (1)^(1/2) (gfa^2 (1) + gfv^2 (1)) /. ruleD);
  35.  
  36. Γfd = 0.1828052084804079` g^2 mx;
  37.  
  38. Δ = 1;
  39.  
  40. (* Thermal cross section via integration formula: *)
  41.  
  42. sigma[x_, g_, mx_, mψ_, mf_] =
  43. 3/(12*π*s ((s - mx^2)^2 + mx^2*(Γfd)^2)) ((1 - 4*mf^2/s)/(1 - 4*mψ^2/s))^(1/2)*
  44. (gfa^2 g11^2 (4 mψ^2 (mf^2 (7 - 6 s/mx^2 + 3 s^2/mx^4) - s) +
  45. s (s - 4 mf^2)) + gfv^2 g11^2 (s + 2 mf^2) (s - 4 mψ^2)); /. mf -> 0
  46.  
  47. sig[x_, g_, mx_, mψ_] = (sigma[x, g, mx, mψ, me] /. rulel /. replace /. rule1) +
  48. (sigma[x, g, mx, mψ, mμ] /. rulel /. replace /. rule1) +
  49. (sigma[x, g, mx, mψ, mτ] /. rulel /. replace /. rule1) +
  50. (sigma[x, g, mx, mψ, md] /. ruleD /. replace /. rule1) +
  51. (sigma[x, g, mx, mψ, md] /. ruleD /. replace /. rule1) +
  52. (sigma[x, g, mx, mψ, ms] /. ruleD /. replace /. rule1) +
  53. (sigma[x, g, mx, mψ, mu] /. ruleU /. replace /. rule1) +
  54. (sigma[x, g, mx, mψ, mc] /. ruleU /. replace /. rule1) +
  55. (sigma[x, g, mx, mψ, mt] /. ruleU /. replace /. rule1);
  56.  
  57. sig1[x_, g_, mx_, mψ_] = 4/(geff)^2 (1 + 2 g12^2/g11^2 (1 + Δ)^(3/2) Exp[-x (Δ)] +
  58. g22^2/g11^2 (1 + Δ)^3 Exp[-2 x (Δ)]) sig[x, g, mx, mψ];
  59.  
  60. sigv[x_?NumericQ, g_?NumericQ, mx_?NumericQ, mψ_?NumericQ] :=
  61. x/(8 mψ^5*BesselK[2, x]*BesselK[2, x]) (NIntegrate[
  62. sig1[x, g, mx, mψ]*s^(1/2)*BesselK[1, s^(1/2)*x/mψ], {s, 4 mψ^2, Infinity},
  63. Method -> {Automatic, "SymbolicProcessing" -> 0},
  64. PrecisionGoal -> 2]);
  65.  
  66. (* CALCULATION OF XF: *)
  67.  
  68. matt = Tuples[{Range[0.005, 0.7, 0.02], Range[100, 5100, 500],
  69. Range[100, 2600, 400]}];
  70.  
  71. Clear[xff]
  72. xff[g, mx, mψ] =
  73. Quiet[Table[
  74. Re[x /. FindRoot[
  75. x - Log[(0.038*2*1.22*10^19*mψ*sigv[x, g, mx, mψ])/
  76. Sqrt[107*x]], {x, 25}]] /. {g -> matt[[i, 1]],
  77. mx -> matt[[i, 2]], mψ -> matt[[i, 3]]}, {i, 1,
  78. 2695}]]; // AbsoluteTiming
  79.  
  80. (* {3567.33,Null} *)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement