Advertisement
mayankjoin3

Untitled

Feb 7th, 2025
72
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 4.74 KB | None | 0 0
  1. Can you extract the unique metrics for multiclass classification
  2.  
  3. Evaluation Metrics Used
  4.  
  5. Accuracy
  6. False Positive Rate (FPR)
  7. F1 Score
  8. Mean Squared Error (MSE)
  9. Mean Absolute Error (MAE)
  10. Computational Cost
  11. Memory Efficiency
  12. Detection Time
  13. Reward Optimization in Reinforcement Learning Approaches
  14. Accuracy
  15. Detection rate
  16. Communication overhead
  17. Sending rate
  18. Latency
  19. Throughput
  20. Precision
  21. Feature reduction efficiency
  22. True Positive Rate (TPR)
  23. True Negative Rate (TNR)
  24. False Negative Rate (FNR)
  25. F1 Score
  26. ROC Curve Analysis
  27. F1 Score (Lifecycle detection: 0.994)
  28. False-Positive Rate
  29. Error Rate
  30. Detection Accuracy (AD)
  31. Training Time & Test Time
  32. Recall (FANET: 93.87)
  33. Specificity
  34. Storage Space Reduction (86.9% for FI method)
  35. Inverted Kolmogorov-Smirnov D statistic
  36. Training time reduction percentage
  37. Accuracy comparison across GAN models
  38. Detection Rate (e.g., 95.11% for RF in botnet detection)
  39. Binary vs. Multi-class classification performance metrics
  40. Comparison of statistical features between synthetic and real-world datasets
  41. ROC Curve Analysis
  42. F1 Score
  43. AUC Score
  44. False-Positive Rate
  45. Detection Accuracy
  46. Recall
  47. Specificity
  48. Correlation Coefficient (R)
  49. Root Mean Square Error (RMSE)
  50. Bias
  51. False Alarm Rate (FAR)
  52. Area Under the Precision-Recall Curve (AUC-PR)
  53. Normalized Accuracy
  54. Stability
  55. Accuracy
  56. Precision
  57. Recall
  58. F1 Score
  59. AUC Score
  60. Detection Rate
  61. False Alarm Rate
  62. Mean Square Error (MSE)
  63. Mean Absolute Error (MAE)
  64. Nearest Neighbor Relative Anomaly Factor (NNRAF)
  65. Boxplot-based outlier detection
  66. Detection Latency (used for assessing the performance of an intrusion detection system)
  67. Crossover-Error Rate (evaluating the effectiveness of intrusion detection)
  68. Floating-Point Operations (FLOPs) Reduction (as an efficiency metric for neural architecture search models)
  69. TP
  70. TN
  71. True Positive Rate (TPR)
  72. False Positive Rate (FPR)
  73. False Negative Rate (FNR)
  74. False Alarm Rate (FAR)
  75. ACCURACY
  76. PRECISION
  77. Recall (R)
  78. F-measure (F)
  79. F1-Score
  80. Sensitivity
  81. Training Time
  82. Testing Time
  83. ROC Curve
  84. AUC-ROC
  85. AUC-PR
  86. Confusion Matrix
  87. Matthews Correlation Coefficient (MCC)
  88. Detection Rate
  89. Detection rate (DR)
  90. ??UROC
  91. AUPR
  92. G-Mean
  93. BalancedAccuracy
  94. Detection Latency – Used to assess the effectiveness of a 6G intrusion detection system.
  95. Crossover-Error Rate – Evaluates the reliability and robustness of the proposed intrusion detection system.
  96. Training Time – Considered as a performance metric in ensemble deep learning models.
  97. False Positive Rate (FPR) – Evaluated in the smart healthcare intrusion detection framework.
  98. Accuracy
  99. Precision
  100. Recall
  101. F1-score
  102. Matthews Correlation Coefficient (MCC)
  103. Area Under Curve (AUC)
  104. Mean Absolute Error (MAE)
  105. Running Time
  106. Feature Size
  107. Fitness Values
  108. Wilcoxon Signed-Rank Test
  109. Paired-Samples T-Test
  110. Cross-Entropy Loss
  111. Fitting Performance
  112. Information Stolen Rate
  113. Labeling Budget
  114. Statistical  Measures
  115.  
  116.  
  117. Accuracy / Correct classification rate / Classification accuracy / Model predictive power
  118. Precision / Positive predictive value (PPV) / True positive rate (TPR)
  119. Recall / Detection rate / Sensitivity / Fraction of positives correctly identified (FPC) / Hit Rate
  120. Specificity / True negative rate (TNR) / True reject rate / Selectivity
  121. F1-Score / F-Ratio / F-measure
  122. False Positive rate (FPR) / Type I error rate / False alarm rate / Fall-out rate
  123. False Negative rate (FNR)
  124. AUC - ROC Area
  125. Kappa Statistic
  126. Mean absolute error (MAE)
  127. Relative Absolute Error (RAE)
  128. Root mean squared error (RMSE)
  129. Matthews correlation coefficient (MCC)
  130. Confusion Matrix
  131. Jaccard score
  132. Hamming loss
  133. Cohen Kappa score
  134. Positive Predictive Value (PPV)
  135. Negative Predictive Value (NPV)
  136. Log loss
  137. GAN (Generative Adversarial Network) loss
  138. F-test
  139. LOF (Local Outlier Factor) Score
  140. ANOVA (Statistical technique)
  141. Mean estimate
  142.  
  143. ML Evaluation Metrics / Techniques
  144.  
  145.  
  146. Training time
  147. Testing time
  148. Prediction time
  149. Detection time
  150. Feature importance scores
  151. coverage capture rate
  152. coverage rate
  153. capture rate
  154. T-Score
  155. Correlation Coefficient
  156. Least Square Regression Error
  157. Maximal Information Compression Index
  158. FFS (Fast Feature Selection)
  159. Sum of Squares
  160. Degree of Dependency (DoD)
  161. GINI Index
  162. G-Mean
  163. Conditional Average Treatment Effect (CPE)
  164. Balanced Accuracy (BACC)
  165. Kolmogorov-Smirnov (KS-statistic)
  166. APIM Score
  167. Macro F1-score
  168. Weighted F1-score
  169.  
  170. accuracy_score
  171. average_precision_score
  172. balanced_accuracy_score
  173. classification_report
  174. cohen_kappa_score
  175. confusion_matrix
  176. f1_score
  177. fbeta_score
  178. hamming_loss
  179. hinge_loss
  180. jaccard_score
  181. log_loss
  182. matthews_corrcoef
  183. multilabel_confusion_matrix
  184. precision_recall_fscore_support
  185. precision_score
  186. recall_score
  187. roc_auc_score
  188. roc_auc_score
  189. Some also work in the multilabel case:
  190. top_k_accuracy_score
  191. zero_one_loss
  192. average_precision_score
  193. Matthews Correlation Coefficient (MCC)
  194.  
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement