Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from torch import nn
- from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM
- from pathlib import Path
- import torch
- import torch.amp.autocast_mode
- from PIL import Image
- import os
- CLIP_PATH = "google/siglip-so400m-patch14-384"
- VLM_PROMPT = "A descriptive caption for this image:\n"
- MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-bnb-4bit"
- CHECKPOINT_PATH = Path("wpkklhc6")
- class ImageAdapter(nn.Module):
- def __init__(self, input_features: int, output_features: int):
- super().__init__()
- self.linear1 = nn.Linear(input_features, output_features)
- self.activation = nn.GELU()
- self.linear2 = nn.Linear(output_features, output_features)
- def forward(self, vision_outputs: torch.Tensor):
- x = self.linear1(vision_outputs)
- x = self.activation(x)
- x = self.linear2(x)
- return x
- # Load CLIP
- print("Loading CLIP")
- clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)
- clip_model = AutoModel.from_pretrained(CLIP_PATH)
- clip_model = clip_model.vision_model
- clip_model.eval()
- clip_model.requires_grad_(False)
- clip_model.to("cuda")
- # Tokenizer
- print("Loading tokenizer")
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
- assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Tokenizer is of type {type(tokenizer)}"
- # LLM
- print("Loading LLM")
- text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16)
- text_model.eval()
- # Image Adapter
- print("Loading image adapter")
- image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)
- image_adapter.load_state_dict(torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu"))
- image_adapter.eval()
- image_adapter.to("cuda")
- @torch.no_grad()
- def stream_chat(input_image: Image.Image):
- torch.cuda.empty_cache()
- # Preprocess image
- image = clip_processor(images=input_image, return_tensors='pt').pixel_values
- image = image.to('cuda')
- # Tokenize the prompt
- prompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)
- # Embed image
- with torch.amp.autocast_mode.autocast('cuda', enabled=True):
- vision_outputs = clip_model(pixel_values=image, output_hidden_states=True)
- image_features = vision_outputs.hidden_states[-2]
- embedded_images = image_adapter(image_features)
- embedded_images = embedded_images.to('cuda')
- # Embed prompt
- prompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))
- assert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}"
- embedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))
- # Construct prompts
- inputs_embeds = torch.cat([
- embedded_bos.expand(embedded_images.shape[0], -1, -1),
- embedded_images.to(dtype=embedded_bos.dtype),
- prompt_embeds.expand(embedded_images.shape[0], -1, -1),
- ], dim=1)
- input_ids = torch.cat([
- torch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),
- torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
- prompt,
- ], dim=1).to('cuda')
- attention_mask = torch.ones_like(input_ids)
- #generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)
- generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)
- # Trim off the prompt
- generate_ids = generate_ids[:, input_ids.shape[1]:]
- if generate_ids[0][-1] == tokenizer.eos_token_id:
- generate_ids = generate_ids[:, :-1]
- caption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
- return caption.strip()
- print(stream_chat(Image.open("/path/to/boobas.png")))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement