Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- ## 1. **NURBS Curve Definition**
- A **NURBS curve** of degree \\( p \\) is defined as:
- \\[
- \mathbf{C}(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u) w_i \mathbf{P}_i}{\sum_{i=0}^{n} N_{i,p}(u) w_i}, \quad u \in [u_0, u_m]
- \\]
- Where:
- - \\( \mathbf{P}_i \\): Control points
- - \\( w_i \\): Weights (positive real numbers)
- - \\( N_{i,p}(u) \\): B-spline basis functions of degree \\( p \\)
- - \\( u \\): Parameter value
- - \\( n \\): Number of control points - 1
- - \\( m \\): Number of knots - 1
- - \\( [u_0, u_m] \\): Domain of the curve (defined by the knot vector)
- ## 2. **B-spline Basis Functions**
- B-spline basis functions are defined **recursively** using the **Cox–de Boor recursion formula**:
- ### Base case (degree 0):
- \\[
- N_{i,0}(u) =
- \begin{cases}
- 1 & \text{if } u_i \le u < u_{i+1} \\
- 0 & \text{otherwise}
- \end{cases}
- \\]
- ### Recursive case (degree \\( p > 0 \\)):
- \\[
- N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)
- \\]
- (With the convention that any term with a zero denominator is taken to be zero.)
Advertisement
Add Comment
Please, Sign In to add comment