Guest User

Untitled

a guest
Apr 11th, 2025
29
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.09 KB | None | 0 0
  1. ## 1. **NURBS Curve Definition**
  2.  
  3. A **NURBS curve** of degree \\( p \\) is defined as:
  4.  
  5.  
  6. \\[
  7. \mathbf{C}(u) = \frac{\sum_{i=0}^{n} N_{i,p}(u) w_i \mathbf{P}_i}{\sum_{i=0}^{n} N_{i,p}(u) w_i}, \quad u \in [u_0, u_m]
  8. \\]
  9.  
  10.  
  11. Where:
  12. - \\( \mathbf{P}_i \\): Control points
  13. - \\( w_i \\): Weights (positive real numbers)
  14. - \\( N_{i,p}(u) \\): B-spline basis functions of degree \\( p \\)
  15. - \\( u \\): Parameter value
  16. - \\( n \\): Number of control points - 1
  17. - \\( m \\): Number of knots - 1
  18. - \\( [u_0, u_m] \\): Domain of the curve (defined by the knot vector)
  19.  
  20.  
  21.  
  22. ## 2. **B-spline Basis Functions**
  23.  
  24. B-spline basis functions are defined **recursively** using the **Cox–de Boor recursion formula**:
  25.  
  26. ### Base case (degree 0):
  27.  
  28. \\[
  29. N_{i,0}(u) =
  30. \begin{cases}
  31. 1 & \text{if } u_i \le u < u_{i+1} \\
  32. 0 & \text{otherwise}
  33. \end{cases}
  34. \\]
  35.  
  36. ### Recursive case (degree \\( p > 0 \\)):
  37. \\[
  38. N_{i,p}(u) = \frac{u - u_i}{u_{i+p} - u_i} N_{i,p-1}(u) + \frac{u_{i+p+1} - u}{u_{i+p+1} - u_{i+1}} N_{i+1,p-1}(u)
  39. \\]
  40.  
  41. (With the convention that any term with a zero denominator is taken to be zero.)
  42.  
Advertisement
Add Comment
Please, Sign In to add comment