MatsGranvik

OEIS Diophantine relation A366346

Oct 8th, 2023
214
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.87 KB | None | 0 0
  1. f = y^2 + y - (x^3 - x^2);
  2. nn = 12;
  3. constant = 0; (* or 0 *)
  4. TableForm[
  5. BB = Table[
  6. Table[-Prime[n]*(Prime[n] - 1)*constant*1 +
  7. Sum[Sum[If[GCD[f, Prime[n]] == g, 1, 0], {x, 1, Prime[n]}], {y,
  8. 1, Prime[n]}], {n, 1, nn}], {g, 1, 4*nn}]]
  9. Total[BB]
  10. TableForm[
  11. CC = Sign[
  12. Table[Table[
  13. Sum[Sum[If[GCD[f, Prime[n]] == g, 1, 0], {x, 1, Prime[n]}], {y,
  14. 1, Prime[n]}], {n, 1, nn}], {g, 1, 4*nn}]]]
  15. Total[CC]
  16. Monitor[TableForm[
  17. AA = Table[
  18. Table[-Prime[n]*(Prime[n] - 1)*constant +
  19. Sum[Sum[If[GCD[f, Prime[n]] == g, 1, 0], {x, 1, Prime[n]}], {y,
  20. 1, Prime[n]}], {n, 1, nn}], {g, 1, 4*nn}]*
  21. Sign[Table[
  22. Table[Sum[
  23. Sum[If[GCD[f, Prime[n]] == g, 1, 0], {x, 1, Prime[n]}], {y, 1,
  24. Prime[n]}], {n, 1, nn}], {g, 1, 4*nn}]]], g]
  25. Total[AA]
  26. Sum[Table[AA[[n, k]], {n, 2, Length[AA]}], {k, 1, nn}]
Advertisement
Add Comment
Please, Sign In to add comment