Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- \documentclass{article}
- \usepackage{amsmath}
- \title{Motion Equations Derivation}
- \begin{document}
- Algebraic derivations \\
- \textbf{Velocity-Time} \\
- Starting with the definition of acceleration.
- % Equation 1
- \begin{align*}
- a &= \frac{\Delta\nu}{\Delta t} \\
- a &= \frac{\nu-\upsilon}{t} \\
- \nu &= \upsilon+at \tag{1}
- \end{align*}
- where, \\
- a = acceleration \\
- $\Delta\nu$ = change in velocity \\
- t = time \\
- $\nu$ = final velocity \\
- $\upsilon$ = initial velocity \\
- \textbf{Position-Time} \\
- % Equation A
- Starting with the definition of average velocity.
- \begin{align*}
- \overline{\nu} &= \frac{\Delta s}{\Delta t} \\
- \overline{\nu} &= \frac{s-s_0}{t} \\
- s &= s_0 + \overline{\nu} t \tag{A}
- \end{align*}
- where, \\
- $\overline{\nu}$ = average velocity \\
- $\Delta$ s = change in distance \\
- s = final position \\
- $s_0$ = initial position
- Continuing with the mean speed theorem.
- \begin{align*}
- \overline{\nu} &= \frac{1}{2}(\nu+\upsilon) \tag{4}
- \end{align*}
- Substitute (1) into (4).
- \begin{align*}
- \overline{\nu} &= \frac{1}{2}[(\upsilon+at)+\upsilon] \\
- \overline{\nu} &= \frac{1}{2}(2\upsilon+at) \\
- \overline{\nu} &= \upsilon + \frac{1}{2}at \tag{b}
- \end{align*}
- Substitute (b) into (a) and solve for s.
- \begin{align*}
- s &= s_0 + (\upsilon + \frac{1}{2}at)t \\
- s &= s_0 + \upsilon t + \frac{1}{2}at^2
- \end{align*}
- Also written as,
- \begin{align*}
- \Delta s &= \upsilon t + \frac{1}{2}at^2 \tag{2}
- \end{align*}
- \textbf{Velocity-Position} \\
- Starting by solving (1) for time.
- \begin{align*}
- \nu &= \upsilon + at \\
- t &= \frac{\nu - \upsilon}{a}
- \end{align*}
- Substitute into (2),
- \begin{align*}
- s &= s_0 + \upsilon t + \frac{1}{2}at^2 \\
- s &= s_0 + \upsilon
- \left (\frac{\nu - \upsilon}{a} \right)
- + \frac{1}{2}a
- \left (\frac{\nu - \upsilon}{a} \right) ^2 \\
- s - s_0 &= \frac{\nu\upsilon - \upsilon^2}{a}
- + \frac{\nu^2 - 2\nu\upsilon + \upsilon^2}{2a} \\
- 2a(s - s_0) &= 2(\nu\upsilon - \upsilon^2)
- + (\nu^2 -2\nu\upsilon + \upsilon^2) \\
- 2a(s - s_0) &= \nu^2 - \upsilon^2 \\
- \nu^2 &= \upsilon^2 + 2a(s - s_0)
- \end{align*}
- Also written as,
- \begin{align*}
- \nu^2 &= \upsilon^2 + 2a(\Delta s)\tag{3}
- \end{align*}
- \end{document}
Advertisement
Add Comment
Please, Sign In to add comment