idlemouse

MotionEquations123

Sep 6th, 2024
136
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 2.30 KB | None | 0 0
  1. \documentclass{article}
  2. \usepackage{amsmath}
  3.  
  4. \title{Motion Equations Derivation}
  5.  
  6. \begin{document}
  7.  
  8. Algebraic derivations \\
  9.  
  10. \textbf{Velocity-Time} \\
  11. Starting with the definition of acceleration.
  12.  
  13. % Equation 1
  14. \begin{align*}
  15.    a &= \frac{\Delta\nu}{\Delta t} \\
  16.    a &= \frac{\nu-\upsilon}{t} \\
  17.    \nu &= \upsilon+at \tag{1}
  18. \end{align*}
  19.  
  20. where, \\
  21. a = acceleration \\
  22. $\Delta\nu$ = change in velocity  \\
  23. t = time \\
  24. $\nu$ = final velocity \\
  25. $\upsilon$ = initial velocity \\
  26.  
  27. \textbf{Position-Time} \\
  28. % Equation A
  29. Starting with the definition of average velocity.
  30. \begin{align*}
  31.    \overline{\nu} &= \frac{\Delta s}{\Delta t} \\
  32.    \overline{\nu} &= \frac{s-s_0}{t} \\
  33.    s &= s_0 + \overline{\nu} t \tag{A}
  34. \end{align*}
  35.  
  36. where, \\
  37. $\overline{\nu}$ = average velocity \\
  38. $\Delta$ s = change in distance \\
  39. s = final position \\
  40. $s_0$ = initial position
  41.  
  42. Continuing with the mean speed theorem.
  43. \begin{align*}
  44.    \overline{\nu} &= \frac{1}{2}(\nu+\upsilon) \tag{4}
  45. \end{align*}
  46.  
  47. Substitute (1) into (4).
  48. \begin{align*}
  49.    \overline{\nu} &= \frac{1}{2}[(\upsilon+at)+\upsilon] \\
  50.    \overline{\nu} &= \frac{1}{2}(2\upsilon+at) \\
  51.    \overline{\nu} &= \upsilon + \frac{1}{2}at \tag{b}
  52. \end{align*}
  53.  
  54. Substitute (b) into (a) and solve for s.
  55. \begin{align*}
  56.    s &= s_0 + (\upsilon + \frac{1}{2}at)t \\
  57.    s &= s_0 + \upsilon t + \frac{1}{2}at^2
  58. \end{align*}
  59.  
  60. Also written as,
  61. \begin{align*}
  62.    \Delta s &= \upsilon t + \frac{1}{2}at^2 \tag{2}
  63. \end{align*}
  64.  
  65. \textbf{Velocity-Position} \\
  66. Starting by solving (1) for time.
  67. \begin{align*}
  68.    \nu &= \upsilon + at \\
  69.    t &= \frac{\nu - \upsilon}{a}
  70. \end{align*}
  71.  
  72. Substitute into (2),
  73. \begin{align*}
  74.    s &= s_0 + \upsilon t + \frac{1}{2}at^2 \\
  75.    s &= s_0 + \upsilon
  76.        \left (\frac{\nu - \upsilon}{a} \right)
  77.        + \frac{1}{2}a
  78.        \left (\frac{\nu - \upsilon}{a} \right) ^2 \\
  79.    s - s_0 &= \frac{\nu\upsilon - \upsilon^2}{a}
  80.        + \frac{\nu^2 - 2\nu\upsilon + \upsilon^2}{2a} \\
  81.    2a(s - s_0) &= 2(\nu\upsilon - \upsilon^2)
  82.        + (\nu^2 -2\nu\upsilon + \upsilon^2) \\
  83.    2a(s - s_0) &= \nu^2 - \upsilon^2 \\
  84.    \nu^2 &= \upsilon^2 + 2a(s - s_0)
  85. \end{align*}
  86.  
  87. Also written as,
  88. \begin{align*}
  89.    \nu^2 &= \upsilon^2 + 2a(\Delta s)\tag{3}
  90. \end{align*}
  91.  
  92. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment