Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- from __future__ import absolute_import, division, print_function, unicode_literals
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- xx = np.arange (-5, 10, 0.5)
- yy = 3*xx**2 - 2*xx + 1
- print (xx)
- print (yy)
- print("версия Tensorflow:", tf.__version__)
- print("используемое GPU:", tf.test.gpu_device_name())
- xx = np.array(xx)
- yy = np.array(yy, dtype=float)
- for i, c in enumerate(xx):
- print("{} xx= {} yy "
- .format(c, yy[i]))
- l0 = tf.keras.layers.Dense(units=1, input_shape=[1])
- model = tf.keras.Sequential([l0])
- model.compile(loss='mean_squared_logarithmic_error', optimizer=tf.keras.optimizers.Adam(0.1))
- history = model.fit(xx, yy, epochs=3000, verbose=False)
- print ("Завершили тренировку модели")
- plt.xlabel('Epoch')
- plt.ylabel('Loss')
- plt.plot(history.history['loss'])
- print(model.predict([-10.0]))
- print("Это значения переменных слоя: {}".format(l0.get_weights()))
- xx = np.linspace(-100, 100, 1000)
- yy = np.sin(xx)
- plt.plot(xx, yy)
- plt.show()
- from __future__ import absolute_import, division, print_function, unicode_literals
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- xx = np.linspace(-100, 100, 1000)
- yy = np.sin(xx)
- plt.plot(xx, yy)
- plt.show()
- print("версия Tensorflow:", tf.__version__)
- print("используемое GPU:", tf.test.gpu_device_name())
- for i, c in enumerate(xx):
- print("{} xx= {} yy "
- .format(c, yy[i]))
- l0 = tf.keras.layers.Dense(units=1, input_shape=[1])
- model = tf.keras.Sequential([l0])
- model.compile(loss='mean_squared_logarithmic_error', optimizer=tf.keras.optimizers.Adam(0.1))
- history = model.fit(xx, yy, epochs=3000, verbose=False)
- print ("Завершили тренировку модели")
- plt.xlabel('Epoch')
- plt.ylabel('Loss')
- plt.plot(history.history['loss'])
- print(model.predict([-10.0]))
- print("Это значения переменных слоя: {}".format(l0.get_weights()))
- from __future__ import absolute_import, division, print_function, unicode_literals
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- xx = np.linspace(-2, 2, 100)
- yy = np.exp(xx + 2)
- plt.plot(xx, yy)
- plt.show()
- print("версия Tensorflow:", tf.__version__)
- print("используемое GPU:", tf.test.gpu_device_name())
- xx = np.array(xx)
- yy = np.array(yy, dtype=float)
- for i, c in enumerate(xx):
- print("{} xx= {} yy "
- .format(c, yy[i]))
- l0 = tf.keras.layers.Dense(units=1, input_shape=[1])
- model = tf.keras.Sequential([l0])
- model.compile(loss='mean_squared_logarithmic_error', optimizer=tf.keras.optimizers.Adam(0.1))
- history = model.fit(xx, yy, epochs=3000, verbose=False)
- print ("Завершили тренировку модели")
- plt.xlabel('Epoch')
- plt.ylabel('Loss')
- plt.plot(history.history['loss'])
- print(model.predict([-10.0]))
- print("Это значения переменных слоя: {}".format(l0.get_weights()))
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement