Advertisement
Guest User

ASRock AMD BC-250 Vulkan

a guest
Dec 2nd, 2024
987
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 9.01 KB | None | 0 0
  1. [user@localhost llama.cpp]$ ./build/bin/llama-cli -m "/home/user/.cache/huggingface/hub/models--TheBloke--TinyLlama-1.1B-Chat-v0.3-GGUF/snapshots/b32046744d93031a26c8e925de2c8932c305f7b9/tinyllama-1.1b-chat-v0.3.Q8_0.gguf" -p "Hi you how are you" -n 50 -e -ngl 33 -t 4
  2. ggml_vulkan: Found 1 Vulkan devices:
  3. ggml_vulkan: 0 = AMD Radeon Graphics (RADV NAVI10) (radv) | uma: 1 | fp16: 1 | warp size: 64
  4. build: 4237 (917786f4) with cc (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3) for x86_64-redhat-linux
  5. main: llama backend init
  6. main: load the model and apply lora adapter, if any
  7. llama_load_model_from_file: using device Vulkan0 (AMD Radeon Graphics (RADV NAVI10)) - 8014 MiB free
  8. llama_model_loader: loaded meta data with 20 key-value pairs and 201 tensors from /home/user/.cache/huggingface/hub/models--TheBloke--TinyLlama-1.1B-Chat-v0.3-GGUF/snapshots/b32046744d93031a26c8e925de2c8932c305f7b9/tinyllama-1.1b-chat-v0.3.Q8_0.gguf (version GGUF V2)
  9. llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
  10. llama_model_loader: - kv 0: general.architecture str = llama
  11. llama_model_loader: - kv 1: general.name str = py007_tinyllama-1.1b-chat-v0.3
  12. llama_model_loader: - kv 2: llama.context_length u32 = 2048
  13. llama_model_loader: - kv 3: llama.embedding_length u32 = 2048
  14. llama_model_loader: - kv 4: llama.block_count u32 = 22
  15. llama_model_loader: - kv 5: llama.feed_forward_length u32 = 5632
  16. llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 64
  17. llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
  18. llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 4
  19. llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
  20. llama_model_loader: - kv 10: llama.rope.freq_base f32 = 10000.000000
  21. llama_model_loader: - kv 11: general.file_type u32 = 7
  22. llama_model_loader: - kv 12: tokenizer.ggml.model str = llama
  23. llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32003] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
  24. llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32003] = [0.000000, 0.000000, 0.000000, 0.0000...
  25. llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32003] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
  26. llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1
  27. llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2
  28. llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0
  29. llama_model_loader: - kv 19: general.quantization_version u32 = 2
  30. llama_model_loader: - type f32: 45 tensors
  31. llama_model_loader: - type q8_0: 156 tensors
  32. llm_load_vocab: control-looking token: 32002 '<|im_end|>' was not control-type; this is probably a bug in the model. its type will be overridden
  33. llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
  34. llm_load_vocab: special tokens cache size = 6
  35. llm_load_vocab: token to piece cache size = 0.1684 MB
  36. llm_load_print_meta: format = GGUF V2
  37. llm_load_print_meta: arch = llama
  38. llm_load_print_meta: vocab type = SPM
  39. llm_load_print_meta: n_vocab = 32003
  40. llm_load_print_meta: n_merges = 0
  41. llm_load_print_meta: vocab_only = 0
  42. llm_load_print_meta: n_ctx_train = 2048
  43. llm_load_print_meta: n_embd = 2048
  44. llm_load_print_meta: n_layer = 22
  45. llm_load_print_meta: n_head = 32
  46. llm_load_print_meta: n_head_kv = 4
  47. llm_load_print_meta: n_rot = 64
  48. llm_load_print_meta: n_swa = 0
  49. llm_load_print_meta: n_embd_head_k = 64
  50. llm_load_print_meta: n_embd_head_v = 64
  51. llm_load_print_meta: n_gqa = 8
  52. llm_load_print_meta: n_embd_k_gqa = 256
  53. llm_load_print_meta: n_embd_v_gqa = 256
  54. llm_load_print_meta: f_norm_eps = 0.0e+00
  55. llm_load_print_meta: f_norm_rms_eps = 1.0e-05
  56. llm_load_print_meta: f_clamp_kqv = 0.0e+00
  57. llm_load_print_meta: f_max_alibi_bias = 0.0e+00
  58. llm_load_print_meta: f_logit_scale = 0.0e+00
  59. llm_load_print_meta: n_ff = 5632
  60. llm_load_print_meta: n_expert = 0
  61. llm_load_print_meta: n_expert_used = 0
  62. llm_load_print_meta: causal attn = 1
  63. llm_load_print_meta: pooling type = 0
  64. llm_load_print_meta: rope type = 0
  65. llm_load_print_meta: rope scaling = linear
  66. llm_load_print_meta: freq_base_train = 10000.0
  67. llm_load_print_meta: freq_scale_train = 1
  68. llm_load_print_meta: n_ctx_orig_yarn = 2048
  69. llm_load_print_meta: rope_finetuned = unknown
  70. llm_load_print_meta: ssm_d_conv = 0
  71. llm_load_print_meta: ssm_d_inner = 0
  72. llm_load_print_meta: ssm_d_state = 0
  73. llm_load_print_meta: ssm_dt_rank = 0
  74. llm_load_print_meta: ssm_dt_b_c_rms = 0
  75. llm_load_print_meta: model type = 1B
  76. llm_load_print_meta: model ftype = Q8_0
  77. llm_load_print_meta: model params = 1.10 B
  78. llm_load_print_meta: model size = 1.09 GiB (8.50 BPW)
  79. llm_load_print_meta: general.name = py007_tinyllama-1.1b-chat-v0.3
  80. llm_load_print_meta: BOS token = 1 '<s>'
  81. llm_load_print_meta: EOS token = 2 '</s>'
  82. llm_load_print_meta: EOT token = 32002 '<|im_end|>'
  83. llm_load_print_meta: UNK token = 0 '<unk>'
  84. llm_load_print_meta: LF token = 13 '<0x0A>'
  85. llm_load_print_meta: EOG token = 2 '</s>'
  86. llm_load_print_meta: EOG token = 32002 '<|im_end|>'
  87. llm_load_print_meta: max token length = 48
  88. ggml_vulkan: Compiling shaders..............................Done!
  89. llm_load_tensors: offloading 22 repeating layers to GPU
  90. llm_load_tensors: offloading output layer to GPU
  91. llm_load_tensors: offloaded 23/23 layers to GPU
  92. llm_load_tensors: Vulkan0 model buffer size = 1048.51 MiB
  93. llm_load_tensors: CPU_Mapped model buffer size = 66.41 MiB
  94. ...............................................................................
  95. llama_new_context_with_model: n_seq_max = 1
  96. llama_new_context_with_model: n_ctx = 4096
  97. llama_new_context_with_model: n_ctx_per_seq = 4096
  98. llama_new_context_with_model: n_batch = 2048
  99. llama_new_context_with_model: n_ubatch = 512
  100. llama_new_context_with_model: flash_attn = 0
  101. llama_new_context_with_model: freq_base = 10000.0
  102. llama_new_context_with_model: freq_scale = 1
  103. llama_new_context_with_model: n_ctx_pre_seq (4096) > n_ctx_train (2048) -- possible training context overflow
  104. llama_kv_cache_init: Vulkan0 KV buffer size = 88.00 MiB
  105. llama_new_context_with_model: KV self size = 88.00 MiB, K (f16): 44.00 MiB, V (f16): 44.00 MiB
  106. llama_new_context_with_model: Vulkan_Host output buffer size = 0.12 MiB
  107. llama_new_context_with_model: Vulkan0 compute buffer size = 280.00 MiB
  108. llama_new_context_with_model: Vulkan_Host compute buffer size = 12.01 MiB
  109. llama_new_context_with_model: graph nodes = 710
  110. llama_new_context_with_model: graph splits = 2
  111. common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
  112. main: llama threadpool init, n_threads = 4
  113. main: model was trained on only 2048 context tokens (4096 specified)
  114.  
  115. system_info: n_threads = 4 (n_threads_batch = 4) / 12 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |
  116.  
  117. sampler seed: 4294967295
  118. sampler params:
  119. repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
  120. dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = -1
  121. top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, temp = 0.800
  122. mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
  123. sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
  124. generate: n_ctx = 4096, n_batch = 2048, n_predict = 50, n_keep = 1
  125.  
  126. Hi you how are you doing, hope you are doing good, how are you doing today?
  127. Hi I am doing well today, still sleepy but getting there. I hope your doing well too.
  128. Hi how is your day going today ?
  129. Hi how is your
  130.  
  131. llama_perf_sampler_print: sampling time = 5.87 ms / 56 runs ( 0.10 ms per token, 9543.29 tokens per second)
  132. llama_perf_context_print: load time = 4051.55 ms
  133. llama_perf_context_print: prompt eval time = 83.38 ms / 6 tokens ( 13.90 ms per token, 71.96 tokens per second)
  134. llama_perf_context_print: eval time = 330.61 ms / 49 runs ( 6.75 ms per token, 148.21 tokens per second)
  135. llama_perf_context_print: total time = 425.95 ms / 55 tokens
Tags: llama.cpp
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement