Advertisement
Guest User

Untitled

a guest
Jun 28th, 2017
63
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 1.00 KB | None | 0 0
  1. \documentclass[12pt]{article}
  2. \usepackage{amsmath,amssymb,amsthm}
  3. \usepackage[pdftex]{graphicx}
  4. \usepackage{fancyhdr}
  5. \pagestyle{fancy}
  6. \begin{document}
  7. The Cauchy condensation test says that \[\sum_{n=1}^{\infty} f(n)\] converges if and only if \[\sum_{n=0}^{\infty} 2^n f(2^n)\] converges.
  8.  
  9. The sum given to evaluate is \[\sum_{n=1}^{\infty} \frac{1}{n^p \ln n}\]
  10. This sum converges if and only if the sum \[\sum_{n=0}^{\infty} \frac{2^n}{(2^n)^p \ln (2^n)}\] converges.
  11. Algebraically, the sum is equal to \[\sum_{n=0}^{\infty} \frac{2^n}{n(2^{np}) \ln 2}\]
  12.  
  13. We apply the ratio test.
  14.  
  15. \begin{eqnarray*}
  16. L &=& \lim_{n\to\infty} |\frac{2^{n+1}}{(n+1) 2^{np+p} \ln 2} \frac{n(2^{np}) \ln 2}{2^n}|\\
  17. &=& \lim_{n\to\infty} |\frac{2^{n+1}}{2^n} \frac{n}{n+1} \frac{2^{np}}{2^{np+p}}|\\
  18. &=& |2^{1-p}|
  19. \end{eqnarray*}
  20.  
  21. To find values of $p$ for which the original sum converges, we set the inequality $2^{1-p} < 1$ which gives $p > 1$ proving that the sum does not converge for $0 \le p < 1$.
  22. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement