MatsGranvik

Resultant of polynomial into real and imaginary

Nov 7th, 2021
197
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.89 KB | None | 0 0
  1. https://math.stackexchange.com/q/4292657/8530
  2.  
  3.  
  4. It is possible, but not very practical. Taking as an example the polynomial p(z)=z3−1, let z=x+iy then equating the real and imaginary parts to 0 and eliminating y between the two equations using polynomial resultants gives resultant(x^3 - 3xy^2 - 1, 3x^2y - y^3, y) q(x)=(x3−1)(8x3+1)2. The real roots of q(x) are the real parts of the roots of p(x), in this case {1,−1/2}. –
  5. dxiv yesterday
  6.  
  7.  
  8. (*start*)
  9. Clear[x, a, b];
  10. Solve[x^3 - 1 == 0, x]
  11. "x^3-1"
  12. Resultant[(Expand[(a + I*b)^3 - 1] + Expand[(a - I*b)^3 - 1])/
  13. 2, (Expand[(a + I*b)^3 - 1] - Expand[(a - I*b)^3 - 1])/2/I, a]
  14. Solve[% == 0, b]
  15. Clear[x];
  16. x = b /. %%
  17. x^3 - 1
  18. "x^3-1"
  19. Resultant[(Expand[(a + I*b)^3 - 1] + Expand[(a - I*b)^3 - 1])/
  20. 2, (Expand[(a + I*b)^3 - 1] - Expand[(a - I*b)^3 - 1])/2/I, b]
  21. Solve[% == 0, a]
  22. Clear[x];
  23. x = a /. %%
  24. x^3 - 1
  25. "x^3-1"
  26. (*end*)
Advertisement
Add Comment
Please, Sign In to add comment