Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- 2020-06-26 17:39:15.544512: W tensorflow_io/core/kernels/audio_video_mp3_kernels.cc:252] libmp3lame.so.0 or lame functions are not available
- 2020-06-26 17:39:15.544659: I tensorflow_io/core/kernels/cpu_check.cc:128] Your CPU supports instructions that this TensorFlow IO binary was not compiled to use: AVX2 AVX512F FMA
- 2020-06-26 17:39:16.009201: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
- 2020-06-26 17:39:16.014220: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
- pciBusID: 0000:68:00.0 name: TITAN V computeCapability: 7.0
- coreClock: 1.455GHz coreCount: 80 deviceMemorySize: 11.75GiB deviceMemoryBandwidth: 607.97GiB/s
- 2020-06-26 17:39:16.014382: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
- 2020-06-26 17:39:16.016011: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
- 2020-06-26 17:39:16.017460: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
- 2020-06-26 17:39:16.017757: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
- 2020-06-26 17:39:16.019316: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
- 2020-06-26 17:39:16.020131: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
- 2020-06-26 17:39:16.023268: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
- 2020-06-26 17:39:16.024691: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
- 2020-06-26 17:39:16,830 - DEBUG - train_spectrogram_cnn.py:__init__:73 - Tensorflow detected GPUs
- 2020-06-26 17:39:16.830491: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA
- 2020-06-26 17:39:16.866064: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2300000000 Hz
- 2020-06-26 17:39:16.870130: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7feaf0000b20 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
- 2020-06-26 17:39:16.870216: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
- 2020-06-26 17:39:16.978098: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x4c21060 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
- 2020-06-26 17:39:16.978176: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): TITAN V, Compute Capability 7.0
- 2020-06-26 17:39:16.980193: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
- pciBusID: 0000:68:00.0 name: TITAN V computeCapability: 7.0
- coreClock: 1.455GHz coreCount: 80 deviceMemorySize: 11.75GiB deviceMemoryBandwidth: 607.97GiB/s
- 2020-06-26 17:39:16.980299: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
- 2020-06-26 17:39:16.980339: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
- 2020-06-26 17:39:16.980376: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
- 2020-06-26 17:39:16.980412: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
- 2020-06-26 17:39:16.980449: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
- 2020-06-26 17:39:16.980496: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
- 2020-06-26 17:39:16.980536: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
- 2020-06-26 17:39:16.983887: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
- 2020-06-26 17:39:16.983981: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
- 2020-06-26 17:39:16.987830: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
- 2020-06-26 17:39:16.987872: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0
- 2020-06-26 17:39:16.987895: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N
- 2020-06-26 17:39:16.992283: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10666 MB memory) -> physical GPU (device: 0, name: TITAN V, pci bus id: 0000:68:00.0, compute capability: 7.0)
- 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:359 - datasetPath = /root/data-cache/data/tmp/ota-cfo-full
- 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:360 - outputPath = /root/data-cache/data/tmp/
- 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:365 - path_name = /root/data-cache/data/tmp/models/
- 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:366 - model_name = ota-cfo-full_20200626-173916
- 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:385 - Loaded 237504 Examples...(190003 train / 23751 validate) 5937 batches of size 32
- 2020-06-26 17:39:33,093 - DEBUG - train_spectrogram_cnn.py:main:451 - Building the model
- 2020-06-26 17:39:33,208 - DEBUG - train_spectrogram_cnn.py:main:497 - Compiling the model
- 2020-06-26 17:39:33,219 - DEBUG - train_spectrogram_cnn.py:main:502 - None
- 2020-06-26 17:39:33.220014: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session started.
- 2020-06-26 17:39:33.220079: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1363] Profiler found 1 GPUs
- 2020-06-26 17:39:33.220849: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcupti.so.10.1
- 2020-06-26 17:39:33.317427: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1479] CUPTI activity buffer flushed
- 2020-06-26 17:39:33,317 - DEBUG - train_spectrogram_cnn.py:main:513 - early stopping with patience = 10
- 2020-06-26 17:39:33.852258: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
- 2020-06-26 17:39:42.836579: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
- 2020-06-26 17:39:45.188834: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session started.
- 1 Physical GPUs, 1 Logical GPUs
- Model: "sequential"
- _________________________________________________________________
- Layer (type) Output Shape Param #
- =================================================================
- conv2d (Conv2D) (None, 254, 254, 64) 640
- _________________________________________________________________
- max_pooling2d (MaxPooling2D) (None, 127, 127, 64) 0
- _________________________________________________________________
- conv2d_1 (Conv2D) (None, 125, 125, 64) 36928
- _________________________________________________________________
- max_pooling2d_1 (MaxPooling2 (None, 62, 62, 64) 0
- _________________________________________________________________
- conv2d_2 (Conv2D) (None, 60, 60, 64) 36928
- _________________________________________________________________
- max_pooling2d_2 (MaxPooling2 (None, 30, 30, 64) 0
- _________________________________________________________________
- conv2d_3 (Conv2D) (None, 28, 28, 64) 36928
- _________________________________________________________________
- max_pooling2d_3 (MaxPooling2 (None, 14, 14, 64) 0
- _________________________________________________________________
- conv2d_4 (Conv2D) (None, 12, 12, 128) 73856
- _________________________________________________________________
- max_pooling2d_4 (MaxPooling2 (None, 6, 6, 128) 0
- _________________________________________________________________
- conv2d_5 (Conv2D) (None, 4, 4, 128) 147584
- _________________________________________________________________
- max_pooling2d_5 (MaxPooling2 (None, 2, 2, 128) 0
- _________________________________________________________________
- flatten (Flatten) (None, 512) 0
- _________________________________________________________________
- dense (Dense) (None, 128) 65664
- _________________________________________________________________
- scores (Dense) (None, 6) 774
- =================================================================
- Total params: 399,302
- Trainable params: 399,302
- Non-trainable params: 0
- _________________________________________________________________
- Epoch 1/100
- 1/5938 [..............................] - ETA: 0s - loss: 1.7893 - accuracy: 0.31252020-06-26 17:39:45.253972: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1479] CUPTI activity buffer flushed
- 2020-06-26 17:39:45.255588: I tensorflow/core/profiler/internal/gpu/device_tracer.cc:216] GpuTracer has collected 179 callback api events and 179 activity events.
- 2020-06-26 17:39:45.276306: I tensorflow/core/profiler/rpc/client/save_profile.cc:168] Creating directory: /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45
- 2020-06-26 17:39:45.284235: I tensorflow/core/profiler/rpc/client/save_profile.cc:174] Dumped gzipped tool data for trace.json.gz to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.trace.json.gz
- 2020-06-26 17:39:45.286639: I tensorflow/core/profiler/utils/event_span.cc:288] Generation of step-events took 0.049 ms
- 2020-06-26 17:39:45.288257: I tensorflow/python/profiler/internal/profiler_wrapper.cc:87] Creating directory: /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45Dumped tool data for overview_page.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.overview_page.pb
- Dumped tool data for input_pipeline.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.input_pipeline.pb
- Dumped tool data for tensorflow_stats.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.tensorflow_stats.pb
- Dumped tool data for kernel_stats.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.kernel_stats.pb
- 2/5938 [..............................] - ETA: 6:24 - loss: 1.7824 - accuracy: 0.2656
- 3/5938 [..............................] - ETA: 17:03 - loss: 1.7562 - accuracy: 0.2396
- 4/5938 [..............................] - ETA: 22:27 - loss: 1.7368 - accuracy: 0.2344
- 5/5938 [..............................] - ETA: 22:55 - loss: 1.7387 - accuracy: 0.2375
- 6/5938 [..............................] - ETA: 24:16 - loss: 1.7175 - accuracy: 0.2656
- 7/5938 [..............................] - ETA: 24:34 - loss: 1.6885 - accuracy: 0.2812
- 8/5938 [..............................] - ETA: 24:32 - loss: 1.6912 - accuracy: 0.2812
- 9/5938 [..............................] - ETA: 26:09 - loss: 1.6738 - accuracy: 0.2986
- 10/5938 [..............................] - ETA: 27:05 - loss: 1.6647 - accuracy: 0.3156
- 11/5938 [..............................] - ETA: 26:12 - loss: 1.6422 - accuracy: 0.3438
- 12/5938 [..............................] - ETA: 26:14 - loss: 1.6436 - accuracy: 0.3359
- 13/5938 [..............................] - ETA: 26:39 - loss: 1.6504 - accuracy: 0.3317
- 14/5938 [..............................] - ETA: 26:36 - loss: 1.6402 - accuracy: 0.3326
- 15/5938 [..............................] - ETA: 26:30 - loss: 1.6349 - accuracy: 0.3354
- 16/5938 [..............................] - ETA: 26:26 - loss: 1.6374 - accuracy: 0.3340
- 17/5938 [..............................] - ETA: 25:57 - loss: 1.6391 - accuracy: 0.3346
- 18/5938 [..............................] - ETA: 26:15 - loss: 1.6396 - accuracy: 0.3351
- 19/5938 [..............................] - ETA: 26:07 - loss: 1.6390 - accuracy: 0.3355
- 20/5938 [..............................] - ETA: 25:59 - loss: 1.6352 - accuracy: 0.3375
- 21/5938 [..............................] - ETA: 26:16 - loss: 1.6262 - accuracy: 0.3467
- 22/5938 [..............................] - ETA: 25:34 - loss: 1.6244 - accuracy: 0.3466
- 23/5938 [..............................] - ETA: 25:57 - loss: 1.6232 - accuracy: 0.3492
- 24/5938 [..............................] - ETA: 26:01 - loss: 1.6177 - accuracy: 0.3529
- 25/5938 [..............................] - ETA: 26:09 - loss: 1.6064 - accuracy: 0.3600
- 26/5938 [..............................] - ETA: 26:16 - loss: 1.5983 - accuracy: 0.3642
- 27/5938 [..............................] - ETA: 25:56 - loss: 1.5939 - accuracy: 0.3657
- 28/5938 [..............................] - ETA: 26:01 - loss: 1.5812 - accuracy: 0.3705
- 29/5938 [..............................] - ETA: 25:57 - loss: 1.5835 - accuracy: 0.3718
- 30/5938 [..............................] - ETA: 25:52 - loss: 1.5856 - accuracy: 0.3688
- 31/5938 [..............................] - ETA: 25:55 - loss: 1.5833 - accuracy: 0.3669
- 32/5938 [..............................] - ETA: 25:58 - loss: 1.5751 - accuracy: 0.3701
- 33/5938 [..............................] - ETA: 26:04 - loss: 1.5705 - accuracy: 0.3703
- 34/5938 [..............................] - ETA: 26:18 - loss: 1.5659 - accuracy: 0.3713
- 35/5938 [..............................] - ETA: 26:13 - loss: 1.5613 - accuracy: 0.3732
- 36/5938 [..............................] - ETA: 26:09 - loss: 1.5597 - accuracy: 0.3698
- 37/5938 [..............................] - ETA: 26:15 - loss: 1.5533 - accuracy: 0.3742
- 38/5938 [..............................] - ETA: 26:15 - loss: 1.5486 - accuracy: 0.3758
- 39/5938 [..............................] - ETA: 26:15 - loss: 1.5451 - accuracy: 0.3774
- 40/5938 [..............................] - ETA: 26:17 - loss: 1.5377 - accuracy: 0.3805
- 41/5938 [..............................] - ETA: 25:58 - loss: 1.5319 - accuracy: 0.3826
- 42/5938 [..............................] - ETA: 26:11 - loss: 1.5273 - accuracy: 0.3824
- 43/5938 [..............................] - ETA: 26:03 - loss: 1.5222 - accuracy: 0.3830
- 44/5938 [..............................] - ETA: 26:08 - loss: 1.5221 - accuracy: 0.3800
- 45/5938 [..............................] - ETA: 25:59 - loss: 1.5198 - accuracy: 0.3812
- 46/5938 [..............................] - ETA: 26:05 - loss: 1.5122 - accuracy: 0.3859
- 47/5938 [..............................] - ETA: 26:05 - loss: 1.5079 - accuracy: 0.3883
- 48/5938 [..............................] - ETA: 26:07 - loss: 1.5039 - accuracy: 0.3913
- 49/5938 [..............................] - ETA: 26:00 - loss: 1.5013 - accuracy: 0.3922
- 50/5938 [..............................] - ETA: 26:03 - loss: 1.4974 - accuracy: 0.3950
- 51/5938 [..............................] - ETA: 26:00 - loss: 1.4876 - accuracy: 0.3977
- 52/5938 [..............................] - ETA: 25:54 - loss: 1.4839 - accuracy: 0.4002
- 53/5938 [..............................] - ETA: 26:07 - loss: 1.4791 - accuracy: 0.4015
- 54/5938 [..............................] - ETA: 25:58 - loss: 1.4706 - accuracy: 0.4045
- 55/5938 [..............................] - ETA: 25:54 - loss: 1.4640 - accuracy: 0.4062
- 56/5938 [..............................] - ETA: 25:58 - loss: 1.4623 - accuracy: 0.4057
- 57/5938 [..............................] - ETA: 25:54 - loss: 1.4579 - accuracy: 0.4073
- 58/5938 [..............................] - ETA: 25:54 - loss: 1.4559 - accuracy: 0.4068
- 59/5938 [..............................] - ETA: 25:43 - loss: 1.4514 - accuracy: 0.4094
- 60/5938 [..............................] - ETA: 25:57 - loss: 1.4490 - accuracy: 0.4104
- 61/5938 [..............................] - ETA: 25:58 - loss: 1.4439 - accuracy: 0.4124
- 62/5938 [..............................] - ETA: 25:58 - loss: 1.4385 - accuracy: 0.4123
- 63/5938 [..............................] - ETA: 25:54 - loss: 1.4369 - accuracy: 0.4122
- 64/5938 [..............................] - ETA: 25:56 - loss: 1.4321 - accuracy: 0.4160
- 65/5938 [..............................] - ETA: 25:44 - loss: 1.4278 - accuracy: 0.4168
- 66/5938 [..............................] - ETA: 25:54 - loss: 1.4263 - accuracy: 0.4176
- 67/5938 [..............................] - ETA: 25:54 - loss: 1.4199 - accuracy: 0.4198
- 68/5938 [..............................] - ETA: 25:47 - loss: 1.4127 - accuracy: 0.4228
- 69/5938 [..............................] - ETA: 25:40 - loss: 1.4086 - accuracy: 0.4244
- 70/5938 [..............................] - ETA: 25:47 - loss: 1.4032 - accuracy: 0.4272
- 71/5938 [..............................] - ETA: 25:49 - loss: 1.3965 - accuracy: 0.4305
- 72/5938 [..............................] - ETA: 25:55 - loss: 1.3906 - accuracy: 0.4327
- 73/5938 [..............................] - ETA: 25:53 - loss: 1.3869 - accuracy: 0.4345
- 74/5938 [..............................] - ETA: 25:50 - loss: 1.3853 - accuracy: 0.4345
- 75/5938 [..............................] - ETA: 25:56 - loss: 1.3810 - accuracy: 0.4358
- 76/5938 [..............................] - ETA: 25:52 - loss: 1.3763 - accuracy: 0.4363
- 77/5938 [..............................] - ETA: 25:45 - loss: 1.3730 - accuracy: 0.4371
- 78/5938 [..............................] - ETA: 25:53 - loss: 1.3697 - accuracy: 0.4387
- 79/5938 [..............................] - ETA: 25:54 - loss: 1.3661 - accuracy: 0.4407
- 80/5938 [..............................] - ETA: 25:53 - loss: 1.3628 - accuracy: 0.4414
- 81/5938 [..............................] - ETA: 25:50 - loss: 1.3610 - accuracy: 0.4414
- 82/5938 [..............................] - ETA: 25:47 - loss: 1.3579 - accuracy: 0.4444
- 83/5938 [..............................] - ETA: 25:50 - loss: 1.3541 - accuracy: 0.4458
- 84/5938 [..............................] - ETA: 25:54 - loss: 1.3499 - accuracy: 0.4487
- 85/5938 [..............................] - ETA: 25:48 - loss: 1.3460 - accuracy: 0.4496
- 86/5938 [..............................] - ETA: 25:50 - loss: 1.3456 - accuracy: 0.4488
- 87/5938 [..............................] - ETA: 25:46 - loss: 1.3418 - accuracy: 0.4508
- 88/5938 [..............................] - ETA: 25:49 - loss: 1.3397 - accuracy: 0.4521
- 89/5938 [..............................] - ETA: 25:52 - loss: 1.3341 - accuracy: 0.4551
- 90/5938 [..............................] - ETA: 25:45 - loss: 1.3292 - accuracy: 0.4566
- 91/5938 [..............................] - ETA: 25:45 - loss: 1.3243 - accuracy: 0.4588
- 92/5938 [..............................] - ETA: 25:45 - loss: 1.3220 - accuracy: 0.4606
- 93/5938 [..............................] - ETA: 25:44 - loss: 1.3166 - accuracy: 0.4624
- 94/5938 [..............................] - ETA: 25:44 - loss: 1.3106 - accuracy: 0.4654
- 95/5938 [..............................] - ETA: 25:47 - loss: 1.3052 - accuracy: 0.4661
- 96/5938 [..............................] - ETA: 25:44 - loss: 1.3007 - accuracy: 0.4684
- 97/5938 [..............................] - ETA: 25:36 - loss: 1.2977 - accuracy: 0.4700
- 98/5938 [..............................] - ETA: 25:37 - loss: 1.2922 - accuracy: 0.4723
- 99/5938 [..............................] - ETA: 25:40 - loss: 1.2883 - accuracy: 0.4732
- 100/5938 [..............................] - ETA: 25:44 - loss: 1.2856 - accuracy: 0.4747
- 101/5938 [..............................] - ETA: 25:45 - loss: 1.2814 - accuracy: 0.4749
- 102/5938 [..............................] - ETA: 25:37 - loss: 1.2764 - accuracy: 0.4767
- 103/5938 [..............................] - ETA: 25:41 - loss: 1.2716 - accuracy: 0.4775
- 104/5938 [..............................] - ETA: 25:40 - loss: 1.2684 - accuracy: 0.4784
- 105/5938 [..............................] - ETA: 25:40 - loss: 1.2642 - accuracy: 0.4798
- 106/5938 [..............................] - ETA: 25:38 - loss: 1.2614 - accuracy: 0.4820
- 107/5938 [..............................] - ETA: 25:35 - loss: 1.2571 - accuracy: 0.4828
- 108/5938 [..............................] - ETA: 25:40 - loss: 1.2522 - accuracy: 0.4852
- 109/5938 [..............................] - ETA: 25:40 - loss: 1.2483 - accuracy: 0.4862
- 110/5938 [..............................] - ETA: 25:36 - loss: 1.2431 - accuracy: 0.4881
- 111/5938 [..............................] - ETA: 25:36 - loss: 1.2393 - accuracy: 0.4893
- 112/5938 [..............................] - ETA: 25:33 - loss: 1.2373 - accuracy: 0.4908
- 113/5938 [..............................] - ETA: 25:32 - loss: 1.2341 - accuracy: 0.4925
- 114/5938 [..............................] - ETA: 25:32 - loss: 1.2303 - accuracy: 0.4940
- 115/5938 [..............................] - ETA: 25:34 - loss: 1.2263 - accuracy: 0.4959
- 116/5938 [..............................] - ETA: 25:36 - loss: 1.2227 - accuracy: 0.4978
- 117/5938 [..............................] - ETA: 25:35 - loss: 1.2186 - accuracy: 0.5003
- 118/5938 [..............................] - ETA: 25:34 - loss: 1.2155 - accuracy: 0.5024
- 119/5938 [..............................] - ETA: 25:35 - loss: 1.2137 - accuracy: 0.5029
- 120/5938 [..............................] - ETA: 25:37 - loss: 1.2115 - accuracy: 0.5047
- 121/5938 [..............................] - ETA: 25:34 - loss: 1.2071 - accuracy: 0.5065
- 122/5938 [..............................] - ETA: 25:36 - loss: 1.2040 - accuracy: 0.5082
- 123/5938 [..............................] - ETA: 25:40 - loss: 1.2012 - accuracy: 0.5089
- 124/5938 [..............................] - ETA: 25:36 - loss: 1.1981 - accuracy: 0.5093
- 125/5938 [..............................] - ETA: 25:35 - loss: 1.1971 - accuracy: 0.5100
- 126/5938 [..............................] - ETA: 25:35 - loss: 1.1950 - accuracy: 0.5112
- 127/5938 [..............................] - ETA: 25:30 - loss: 1.1915 - accuracy: 0.5123
- 128/5938 [..............................] - ETA: 25:33 - loss: 1.1881 - accuracy: 0.5137
- 129/5938 [..............................] - ETA: 25:30 - loss: 1.1841 - accuracy: 0.5153
- 130/5938 [..............................] - ETA: 25:30 - loss: 1.1815 - accuracy: 0.5171
- 131/5938 [..............................] - ETA: 25:30 - loss: 1.1780 - accuracy: 0.5186
- 132/5938 [..............................] - ETA: 25:26 - loss: 1.1743 - accuracy: 0.5201
- 133/5938 [..............................] - ETA: 25:27 - loss: 1.1704 - accuracy: 0.5221
- 134/5938 [..............................] - ETA: 25:24 - loss: 1.1670 - accuracy: 0.5240
- 135/5938 [..............................] - ETA: 25:26 - loss: 1.1644 - accuracy: 0.5248
- 136/5938 [..............................] - ETA: 25:25 - loss: 1.1630 - accuracy: 0.5246
- 137/5938 [..............................] - ETA: 25:23 - loss: 1.1614 - accuracy: 0.5246
- 138/5938 [..............................] - ETA: 25:25 - loss: 1.1567 - accuracy: 0.5263
- 139/5938 [..............................] - ETA: 25:27 - loss: 1.1521 - accuracy: 0.5283
- 140/5938 [..............................] - ETA: 25:28 - loss: 1.1491 - accuracy: 0.5295
- 141/5938 [..............................] - ETA: 25:22 - loss: 1.1463 - accuracy: 0.5304
- 142/5938 [..............................] - ETA: 25:26 - loss: 1.1442 - accuracy: 0.5321
- 143/5938 [..............................] - ETA: 25:28 - loss: 1.1398 - accuracy: 0.5341
- 144/5938 [..............................] - ETA: 25:23 - loss: 1.1375 - accuracy: 0.5345
- 145/5938 [..............................] - ETA: 25:23 - loss: 1.1356 - accuracy: 0.5347
- 146/5938 [..............................] - ETA: 25:25 - loss: 1.1351 - accuracy: 0.5353
- 147/5938 [..............................] - ETA: 25:22 - loss: 1.1321 - accuracy: 0.5364
- 148/5938 [..............................] - ETA: 25:24 - loss: 1.1285 - accuracy: 0.5376
- 149/5938 [..............................] - ETA: 25:25 - loss: 1.1257 - accuracy: 0.5394
- 150/5938 [..............................] - ETA: 25:21 - loss: 1.1232 - accuracy: 0.5406
- 151/5938 [..............................] - ETA: 25:23 - loss: 1.1243 - accuracy: 0.5410
- 152/5938 [..............................] - ETA: 25:25 - loss: 1.1227 - accuracy: 0.5417
- 153/5938 [..............................] - ETA: 25:25 - loss: 1.1185 - accuracy: 0.5433
- 154/5938 [..............................] - ETA: 25:28 - loss: 1.1157 - accuracy: 0.5440
- 155/5938 [..............................] - ETA: 25:23 - loss: 1.1124 - accuracy: 0.5452
- 156/5938 [..............................] - ETA: 25:22 - loss: 1.1118 - accuracy: 0.5451
- 157/5938 [..............................] - ETA: 25:24 - loss: 1.1099 - accuracy: 0.5456
- 158/5938 [..............................] - ETA: 25:25 - loss: 1.1067 - accuracy: 0.5465
- 159/5938 [..............................] - ETA: 25:26 - loss: 1.1054 - accuracy: 0.5474
- 160/5938 [..............................] - ETA: 25:25 - loss: 1.1037 - accuracy: 0.5482
- 161/5938 [..............................] - ETA: 25:25 - loss: 1.1022 - accuracy: 0.5487
- 162/5938 [..............................] - ETA: 25:21 - loss: 1.1000 - accuracy: 0.5498
- 163/5938 [..............................] - ETA: 25:21 - loss: 1.0963 - accuracy: 0.5516
- 164/5938 [..............................] - ETA: 25:19 - loss: 1.0958 - accuracy: 0.5520
- 165/5938 [..............................] - ETA: 25:21 - loss: 1.0927 - accuracy: 0.5532
- 166/5938 [..............................] - ETA: 25:23 - loss: 1.0902 - accuracy: 0.5544
- 167/5938 [..............................] - ETA: 25:20 - loss: 1.0878 - accuracy: 0.5554
- 168/5938 [..............................] - ETA: 25:23 - loss: 1.0852 - accuracy: 0.5560
- 169/5938 [..............................] - ETA: 25:21 - loss: 1.0830 - accuracy: 0.5570
- 170/5938 [..............................] - ETA: 25:19 - loss: 1.0790 - accuracy: 0.5588
- 171/5938 [..............................] - ETA: 25:20 - loss: 1.0761 - accuracy: 0.5601
- 172/5938 [..............................] - ETA: 25:20 - loss: 1.0741 - accuracy: 0.5614
- 173/5938 [..............................] - ETA: 25:19 - loss: 1.0725 - accuracy: 0.5616
- 174/5938 [..............................] - ETA: 25:20 - loss: 1.0709 - accuracy: 0.5616
- 175/5938 [..............................] - ETA: 25:22 - loss: 1.0676 - accuracy: 0.5629
- 176/5938 [..............................] - ETA: 25:24 - loss: 1.0650 - accuracy: 0.5643
- 177/5938 [..............................] - ETA: 25:22 - loss: 1.0627 - accuracy: 0.5650
- 178/5938 [..............................] - ETA: 25:23 - loss: 1.0629 - accuracy: 0.5651
- 179/5938 [..............................] - ETA: 25:24 - loss: 1.0589 - accuracy: 0.5672
- 180/5938 [..............................] - ETA: 25:22 - loss: 1.0565 - accuracy: 0.5681
- 181/5938 [..............................] - ETA: 25:24 - loss: 1.0541 - accuracy: 0.5691
- 182/5938 [..............................] - ETA: 25:24 - loss: 1.0527 - accuracy: 0.5695
- 183/5938 [..............................] - ETA: 25:21 - loss: 1.0511 - accuracy: 0.5704
- 184/5938 [..............................] - ETA: 25:37 - loss: 1.0478 - accuracy: 0.5718
- 185/5938 [..............................] - ETA: 25:41 - loss: 1.0452 - accuracy: 0.5730
- 186/5938 [..............................] - ETA: 25:50 - loss: 1.0424 - accuracy: 0.5741
- 187/5938 [..............................] - ETA: 25:58 - loss: 1.0396 - accuracy: 0.5754
- 188/5938 [..............................] - ETA: 26:08 - loss: 1.0370 - accuracy: 0.5765
- 189/5938 [..............................] - ETA: 26:11 - loss: 1.0339 - accuracy: 0.5775
- 190/5938 [..............................] - ETA: 26:15 - loss: 1.0315 - accuracy: 0.5786
- 191/5938 [..............................] - ETA: 26:27 - loss: 1.0286 - accuracy: 0.5792
- 192/5938 [..............................] - ETA: 26:34 - loss: 1.0254 - accuracy: 0.5807
- 193/5938 [..............................] - ETA: 26:59 - loss: 1.0238 - accuracy: 0.5813
- 194/5938 [..............................] - ETA: 27:03 - loss: 1.0212 - accuracy: 0.5825
- 195/5938 [..............................] - ETA: 27:10 - loss: 1.0171 - accuracy: 0.5840
- 196/5938 [..............................] - ETA: 27:29 - loss: 1.0146 - accuracy: 0.5847
- 197/5938 [..............................] - ETA: 27:48 - loss: 1.0124 - accuracy: 0.5855
- 198/5938 [>.............................] - ETA: 27:53 - loss: 1.0100 - accuracy: 0.5866
- 199/5938 [>.............................] - ETA: 27:54 - loss: 1.0073 - accuracy: 0.5878
- 200/5938 [>.............................] - ETA: 28:04 - loss: 1.0045 - accuracy: 0.5889
- 201/5938 [>.............................] - ETA: 28:22 - loss: 1.0021 - accuracy: 0.5894
- 202/5938 [>.............................] - ETA: 28:17 - loss: 0.9998 - accuracy: 0.5899
- 203/5938 [>.............................] - ETA: 28:27 - loss: 0.9975 - accuracy: 0.5907
- 204/5938 [>.............................] - ETA: 28:43 - loss: 0.9941 - accuracy: 0.5921
- 205/5938 [>.............................] - ETA: 28:52 - loss: 0.9915 - accuracy: 0.5930
- 206/5938 [>.............................] - ETA: 28:54 - loss: 0.9885 - accuracy: 0.5942
- 207/5938 [>.............................] - ETA: 29:03 - loss: 0.9858 - accuracy: 0.5951
- 208/5938 [>.............................] - ETA: 29:12 - loss: 0.9846 - accuracy: 0.5954
- 209/5938 [>.............................] - ETA: 29:12 - loss: 0.9811 - accuracy: 0.5969
- 210/5938 [>.............................] - ETA: 29:20 - loss: 0.9779 - accuracy: 0.5982
- 211/5938 [>.............................] - ETA: 29:28 - loss: 0.9762 - accuracy: 0.5988
- 212/5938 [>.............................] - ETA: 29:34 - loss: 0.9729 - accuracy: 0.6002
- 213/5938 [>.............................] - ETA: 29:43 - loss: 0.9706 - accuracy: 0.6014
- 214/5938 [>.............................] - ETA: 29:51 - loss: 0.9679 - accuracy: 0.6028
- 215/5938 [>.............................] - ETA: 30:04 - loss: 0.9657 - accuracy: 0.6036
- 216/5938 [>.............................] - ETA: 29:58 - loss: 0.9637 - accuracy: 0.6046
- 217/5938 [>.............................] - ETA: 30:16 - loss: 0.9622 - accuracy: 0.6051
- 218/5938 [>.............................] - ETA: 30:29 - loss: 0.9609 - accuracy: 0.6059
- 219/5938 [>.............................] - ETA: 30:40 - loss: 0.9581 - accuracy: 0.6073
- 220/5938 [>.............................] - ETA: 30:42 - loss: 0.9554 - accuracy: 0.6085
- 221/5938 [>.............................] - ETA: 31:12 - loss: 0.9526 - accuracy: 0.6099
- 222/5938 [>.............................] - ETA: 31:26 - loss: 0.9518 - accuracy: 0.6106
- 223/5938 [>.............................] - ETA: 31:20 - loss: 0.9488 - accuracy: 0.6122
- 224/5938 [>.............................] - ETA: 31:37 - loss: 0.9462 - accuracy: 0.6137
- 225/5938 [>.............................] - ETA: 31:40 - loss: 0.9484 - accuracy: 0.6142
- 226/5938 [>.............................] - ETA: 31:47 - loss: 0.9456 - accuracy: 0.6153
- 227/5938 [>.............................] - ETA: 31:54 - loss: 0.9437 - accuracy: 0.6161
- 228/5938 [>.............................] - ETA: 31:52 - loss: 0.9417 - accuracy: 0.6169
- 229/5938 [>.............................] - ETA: 32:01 - loss: 0.9400 - accuracy: 0.6175
- 230/5938 [>.............................] - ETA: 32:02 - loss: 0.9386 - accuracy: 0.6183
- 231/5938 [>.............................] - ETA: 32:06 - loss: 0.9390 - accuracy: 0.6184
- 232/5938 [>.............................] - ETA: 32:20 - loss: 0.9375 - accuracy: 0.6192
- 233/5938 [>.............................] - ETA: 32:15 - loss: 0.9366 - accuracy: 0.6199
- 234/5938 [>.............................] - ETA: 32:23 - loss: 0.9350 - accuracy: 0.6209
- 235/5938 [>.............................] - ETA: 32:51 - loss: 0.9328 - accuracy: 0.6217
- 236/5938 [>.............................] - ETA: 32:46 - loss: 0.9326 - accuracy: 0.6220
- 237/5938 [>.............................] - ETA: 32:57 - loss: 0.9303 - accuracy: 0.6230
- 238/5938 [>.............................] - ETA: 33:21 - loss: 0.9294 - accuracy: 0.6233
- 239/5938 [>.............................] - ETA: 33:23 - loss: 0.9274 - accuracy: 0.6240
- 240/5938 [>.............................] - ETA: 33:26 - loss: 0.9256 - accuracy: 0.6245
- 241/5938 [>.............................] - ETA: 33:31 - loss: 0.9233 - accuracy: 0.6255
- 242/5938 [>.............................] - ETA: 33:33 - loss: 0.9222 - accuracy: 0.6259
- 243/5938 [>.............................] - ETA: 33:38 - loss: 0.9215 - accuracy: 0.6264
- 244/5938 [>.............................] - ETA: 33:49 - loss: 0.9229 - accuracy: 0.6268
- 245/5938 [>.............................] - ETA: 33:55 - loss: 0.9215 - accuracy: 0.6274
- 246/5938 [>.............................] - ETA: 34:24 - loss: 0.9210 - accuracy: 0.6278
- 247/5938 [>.............................] - ETA: 34:27 - loss: 0.9199 - accuracy: 0.6283
- 248/5938 [>.............................] - ETA: 34:29 - loss: 0.9189 - accuracy: 0.6289
- 249/5938 [>.............................] - ETA: 34:36 - loss: 0.9171 - accuracy: 0.6295
- 250/5938 [>.............................] - ETA: 34:56 - loss: 0.9168 - accuracy: 0.6294
- 251/5938 [>.............................] - ETA: 34:50 - loss: 0.9157 - accuracy: 0.6299
- 252/5938 [>.............................] - ETA: 35:02 - loss: 0.9142 - accuracy: 0.6303
- 253/5938 [>.............................] - ETA: 35:11 - loss: 0.9129 - accuracy: 0.6309
- 254/5938 [>.............................] - ETA: 35:06 - loss: 0.9119 - accuracy: 0.6312
- 255/5938 [>.............................] - ETA: 35:14 - loss: 0.9110 - accuracy: 0.6313
- 256/5938 [>.............................] - ETA: 35:23 - loss: 0.9100 - accuracy: 0.6320
- 257/5938 [>.............................] - ETA: 35:29 - loss: 0.9088 - accuracy: 0.6325
- 258/5938 [>.............................] - ETA: 35:28 - loss: 0.9080 - accuracy: 0.6328
- 259/5938 [>.............................] - ETA: 35:40 - loss: 0.9065 - accuracy: 0.6336
- 260/5938 [>.............................] - ETA: 35:44 - loss: 0.9055 - accuracy: 0.6340
- 261/5938 [>.............................] - ETA: 35:45 - loss: 0.9042 - accuracy: 0.6345
- 262/5938 [>.............................] - ETA: 35:54 - loss: 0.9031 - accuracy: 0.6349
- 263/5938 [>.............................] - ETA: 35:52 - loss: 0.9019 - accuracy: 0.6358
- 264/5938 [>.............................] - ETA: 36:21 - loss: 0.9012 - accuracy: 0.6361
- 265/5938 [>.............................] - ETA: 36:29 - loss: 0.8989 - accuracy: 0.6375
- 266/5938 [>.............................] - ETA: 36:37 - loss: 0.8965 - accuracy: 0.6386
- 267/5938 [>.............................] - ETA: 36:46 - loss: 0.8945 - accuracy: 0.6395
- 268/5938 [>.............................] - ETA: 36:39 - loss: 0.8927 - accuracy: 0.6404
- 269/5938 [>.............................] - ETA: 36:56 - loss: 0.8908 - accuracy: 0.6411
- 270/5938 [>.............................] - ETA: 37:07 - loss: 0.8916 - accuracy: 0.6418
- 271/5938 [>.............................] - ETA: 37:05 - loss: 0.8900 - accuracy: 0.6425
- 272/5938 [>.............................] - ETA: 37:08 - loss: 0.8881 - accuracy: 0.6433
- 273/5938 [>.............................] - ETA: 37:13 - loss: 0.8866 - accuracy: 0.6439
- 274/5938 [>.............................] - ETA: 37:18 - loss: 0.8857 - accuracy: 0.6443
- 275/5938 [>.............................] - ETA: 37:29 - loss: 0.8839 - accuracy: 0.6450
- 276/5938 [>.............................] - ETA: 37:23 - loss: 0.8824 - accuracy: 0.6455
- 277/5938 [>.............................] - ETA: 37:32 - loss: 0.8800 - accuracy: 0.6464
- 278/5938 [>.............................] - ETA: 37:42 - loss: 0.8784 - accuracy: 0.6473
- 279/5938 [>.............................] - ETA: 37:37 - loss: 0.8764 - accuracy: 0.6482
- 280/5938 [>.............................] - ETA: 37:42 - loss: 0.8747 - accuracy: 0.6490
- 281/5938 [>.............................] - ETA: 38:02 - loss: 0.8724 - accuracy: 0.6499
- 282/5938 [>.............................] - ETA: 37:58 - loss: 0.8708 - accuracy: 0.6507
- 283/5938 [>.............................] - ETA: 38:05 - loss: 0.8691 - accuracy: 0.6515
- 284/5938 [>.............................] - ETA: 38:24 - loss: 0.8671 - accuracy: 0.6523
- 285/5938 [>.............................] - ETA: 38:20 - loss: 0.8650 - accuracy: 0.6532
- 286/5938 [>.............................] - ETA: 38:47 - loss: 0.8645 - accuracy: 0.6541
- 287/5938 [>.............................] - ETA: 38:58 - loss: 0.8628 - accuracy: 0.6547
- 288/5938 [>.............................] - ETA: 38:55 - loss: 0.8607 - accuracy: 0.6556
- 289/5938 [>.............................] - ETA: 39:02 - loss: 0.8586 - accuracy: 0.6565
- 290/5938 [>.............................] - ETA: 39:05 - loss: 0.8572 - accuracy: 0.6571
- 291/5938 [>.............................] - ETA: 39:30 - loss: 0.8557 - accuracy: 0.6576
- 292/5938 [>.............................] - ETA: 39:39 - loss: 0.8543 - accuracy: 0.6582
- 294/5938 [>.............................] - ETA: 39:41 - loss: 0.8518 - accuracy: 0.6593
- 295/5938 [>.............................] - ETA: 39:56 - loss: 0.8501 - accuracy: 0.6601
- 296/5938 [>.............................] - ETA: 40:03 - loss: 0.8485 - accuracy: 0.6607
- 297/5938 [>.............................] - ETA: 40:00 - loss: 0.8468 - accuracy: 0.6614
- 298/5938 [>.............................] - ETA: 40:05 - loss: 0.8453 - accuracy: 0.6618
- 299/5938 [>.............................] - ETA: 40:09 - loss: 0.8443 - accuracy: 0.6624
- 300/5938 [>.............................] - ETA: 40:13 - loss: 0.8426 - accuracy: 0.6632
- 301/5938 [>.............................] - ETA: 40:09 - loss: 0.8403 - accuracy: 0.6642
- 302/5938 [>.............................] - ETA: 40:13 - loss: 0.8385 - accuracy: 0.6650
- 303/5938 [>.............................] - ETA: 40:18 - loss: 0.8370 - accuracy: 0.6655
- 304/5938 [>.............................] - ETA: 40:17 - loss: 0.8351 - accuracy: 0.6662
- 305/5938 [>.............................] - ETA: 40:20 - loss: 0.8334 - accuracy: 0.6669
- 306/5938 [>.............................] - ETA: 40:22 - loss: 0.8312 - accuracy: 0.6678
- 307/5938 [>.............................] - ETA: 40:23 - loss: 0.8295 - accuracy: 0.6686
- 308/5938 [>.............................] - ETA: 40:44 - loss: 0.8282 - accuracy: 0.6693
- 309/5938 [>.............................] - ETA: 40:45 - loss: 0.8262 - accuracy: 0.6701
- 310/5938 [>.............................] - ETA: 40:53 - loss: 0.8244 - accuracy: 0.6709
- 311/5938 [>.............................] - ETA: 41:06 - loss: 0.8227 - accuracy: 0.6717
- 312/5938 [>.............................] - ETA: 41:10 - loss: 0.8212 - accuracy: 0.6724
- 313/5938 [>.............................] - ETA: 41:09 - loss: 0.8194 - accuracy: 0.6732
- 314/5938 [>.............................] - ETA: 41:24 - loss: 0.8177 - accuracy: 0.6740
- 315/5938 [>.............................] - ETA: 41:24 - loss: 0.8160 - accuracy: 0.6746
- 316/5938 [>.............................] - ETA: 41:23 - loss: 0.8145 - accuracy: 0.6751
- 317/5938 [>.............................] - ETA: 41:25 - loss: 0.8130 - accuracy: 0.6757
- 318/5938 [>.............................] - ETA: 41:26 - loss: 0.8119 - accuracy: 0.6759
- 319/5938 [>.............................] - ETA: 41:34 - loss: 0.8104 - accuracy: 0.6764
- 320/5938 [>.............................] - ETA: 41:32 - loss: 0.8089 - accuracy: 0.6771
- 321/5938 [>.............................] - ETA: 41:38 - loss: 0.8074 - accuracy: 0.6776
- 322/5938 [>.............................] - ETA: 41:43 - loss: 0.8055 - accuracy: 0.6783
- 323/5938 [>.............................] - ETA: 41:44 - loss: 0.8038 - accuracy: 0.6789
- 324/5938 [>.............................] - ETA: 41:46 - loss: 0.8021 - accuracy: 0.6796
- 325/5938 [>.............................] - ETA: 41:48 - loss: 0.8002 - accuracy: 0.6805
- 326/5938 [>.............................] - ETA: 41:58 - loss: 0.7988 - accuracy: 0.6811
- 327/5938 [>.............................] - ETA: 42:14 - loss: 0.7970 - accuracy: 0.6819
- 328/5938 [>.............................] - ETA: 42:09 - loss: 0.7950 - accuracy: 0.6826
- 329/5938 [>.............................] - ETA: 42:13 - loss: 0.7929 - accuracy: 0.6836
- 330/5938 [>.............................] - ETA: 42:23 - loss: 0.7911 - accuracy: 0.6842
- 331/5938 [>.............................] - ETA: 42:18 - loss: 0.7893 - accuracy: 0.6848
- 332/5938 [>.............................] - ETA: 42:18 - loss: 0.7880 - accuracy: 0.6852
- 333/5938 [>.............................] - ETA: 42:25 - loss: 0.7863 - accuracy: 0.6859
- 334/5938 [>.............................] - ETA: 42:26 - loss: 0.7855 - accuracy: 0.6864
- 335/5938 [>.............................] - ETA: 42:48 - loss: 0.7836 - accuracy: 0.6870
- 336/5938 [>.............................] - ETA: 42:59 - loss: 0.7821 - accuracy: 0.6879
- 337/5938 [>.............................] - ETA: 42:55 - loss: 0.7814 - accuracy: 0.6880
- 338/5938 [>.............................] - ETA: 42:57 - loss: 0.7801 - accuracy: 0.6884
- 339/5938 [>.............................] - ETA: 42:57 - loss: 0.7788 - accuracy: 0.6890
- 340/5938 [>.............................] - ETA: 42:57 - loss: 0.7771 - accuracy: 0.6897
- 341/5938 [>.............................] - ETA: 42:59 - loss: 0.7755 - accuracy: 0.6903
- 342/5938 [>.............................] - ETA: 42:53 - loss: 0.7739 - accuracy: 0.6911
- 343/5938 [>.............................] - ETA: 42:56 - loss: 0.7721 - accuracy: 0.6918
- 344/5938 [>.............................] - ETA: 42:57 - loss: 0.7705 - accuracy: 0.6924
- 345/5938 [>.............................] - ETA: 42:58 - loss: 0.7687 - accuracy: 0.6931
- 346/5938 [>.............................] - ETA: 42:58 - loss: 0.7671 - accuracy: 0.6936
- 347/5938 [>.............................] - ETA: 43:10 - loss: 0.7655 - accuracy: 0.6943
- 348/5938 [>.............................] - ETA: 43:16 - loss: 0.7639 - accuracy: 0.6950
- 349/5938 [>.............................] - ETA: 43:16 - loss: 0.7626 - accuracy: 0.6956
- 350/5938 [>.............................] - ETA: 43:14 - loss: 0.7611 - accuracy: 0.6961
- 351/5938 [>.............................] - ETA: 43:17 - loss: 0.7604 - accuracy: 0.6964
- 352/5938 [>.............................] - ETA: 43:19 - loss: 0.7599 - accuracy: 0.6965
- 353/5938 [>.............................] - ETA: 43:15 - loss: 0.7586 - accuracy: 0.6970
- 354/5938 [>.............................] - ETA: 43:31 - loss: 0.7574 - accuracy: 0.6974
- 355/5938 [>.............................] - ETA: 43:25 - loss: 0.7569 - accuracy: 0.6979
- 356/5938 [>.............................] - ETA: 43:42 - loss: 0.7560 - accuracy: 0.6982
- 357/5938 [>.............................] - ETA: 43:54 - loss: 0.7551 - accuracy: 0.6984
- 358/5938 [>.............................] - ETA: 43:49 - loss: 0.7550 - accuracy: 0.6984
- 359/5938 [>.............................] - ETA: 43:52 - loss: 0.7538 - accuracy: 0.6989
- 360/5938 [>.............................] - ETA: 43:58 - loss: 0.7526 - accuracy: 0.6993
- 361/5938 [>.............................] - ETA: 43:58 - loss: 0.7512 - accuracy: 0.7001
- 362/5938 [>.............................] - ETA: 44:06 - loss: 0.7502 - accuracy: 0.7005
- 363/5938 [>.............................] - ETA: 44:07 - loss: 0.7501 - accuracy: 0.7005
- 364/5938 [>.............................] - ETA: 44:13 - loss: 0.7493 - accuracy: 0.7008
- 365/5938 [>.............................] - ETA: 44:15 - loss: 0.7487 - accuracy: 0.7013
- 366/5938 [>.............................] - ETA: 44:10 - loss: 0.7482 - accuracy: 0.7014
- 367/5938 [>.............................] - ETA: 44:23 - loss: 0.7470 - accuracy: 0.7019
- 368/5938 [>.............................] - ETA: 44:27 - loss: 0.7457 - accuracy: 0.7024
- 369/5938 [>.............................] - ETA: 44:22 - loss: 0.7461 - accuracy: 0.7025
- 370/5938 [>.............................] - ETA: 44:45 - loss: 0.7461 - accuracy: 0.7026
- 371/5938 [>.............................] - ETA: 44:42 - loss: 0.7455 - accuracy: 0.7028
- 372/5938 [>.............................] - ETA: 44:40 - loss: 0.7448 - accuracy: 0.7033
- 373/5938 [>.............................] - ETA: 44:46 - loss: 0.7447 - accuracy: 0.7034
- 374/5938 [>.............................] - ETA: 44:42 - loss: 0.7442 - accuracy: 0.7039
- 375/5938 [>.............................] - ETA: 44:43 - loss: 0.7437 - accuracy: 0.7042
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement