Advertisement
Guest User

tensorflow log

a guest
Jul 1st, 2020
178
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 76.54 KB | None | 0 0
  1. 2020-06-26 17:39:15.544512: W tensorflow_io/core/kernels/audio_video_mp3_kernels.cc:252] libmp3lame.so.0 or lame functions are not available
  2. 2020-06-26 17:39:15.544659: I tensorflow_io/core/kernels/cpu_check.cc:128] Your CPU supports instructions that this TensorFlow IO binary was not compiled to use: AVX2 AVX512F FMA
  3. 2020-06-26 17:39:16.009201: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
  4. 2020-06-26 17:39:16.014220: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
  5. pciBusID: 0000:68:00.0 name: TITAN V computeCapability: 7.0
  6. coreClock: 1.455GHz coreCount: 80 deviceMemorySize: 11.75GiB deviceMemoryBandwidth: 607.97GiB/s
  7. 2020-06-26 17:39:16.014382: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
  8. 2020-06-26 17:39:16.016011: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
  9. 2020-06-26 17:39:16.017460: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
  10. 2020-06-26 17:39:16.017757: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
  11. 2020-06-26 17:39:16.019316: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
  12. 2020-06-26 17:39:16.020131: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
  13. 2020-06-26 17:39:16.023268: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
  14. 2020-06-26 17:39:16.024691: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
  15. 2020-06-26 17:39:16,830 - DEBUG - train_spectrogram_cnn.py:__init__:73 - Tensorflow detected GPUs
  16. 2020-06-26 17:39:16.830491: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 AVX512F FMA
  17. 2020-06-26 17:39:16.866064: I tensorflow/core/platform/profile_utils/cpu_utils.cc:102] CPU Frequency: 2300000000 Hz
  18. 2020-06-26 17:39:16.870130: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7feaf0000b20 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
  19. 2020-06-26 17:39:16.870216: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): Host, Default Version
  20. 2020-06-26 17:39:16.978098: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x4c21060 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:
  21. 2020-06-26 17:39:16.978176: I tensorflow/compiler/xla/service/service.cc:176] StreamExecutor device (0): TITAN V, Compute Capability 7.0
  22. 2020-06-26 17:39:16.980193: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1561] Found device 0 with properties:
  23. pciBusID: 0000:68:00.0 name: TITAN V computeCapability: 7.0
  24. coreClock: 1.455GHz coreCount: 80 deviceMemorySize: 11.75GiB deviceMemoryBandwidth: 607.97GiB/s
  25. 2020-06-26 17:39:16.980299: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
  26. 2020-06-26 17:39:16.980339: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
  27. 2020-06-26 17:39:16.980376: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
  28. 2020-06-26 17:39:16.980412: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
  29. 2020-06-26 17:39:16.980449: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
  30. 2020-06-26 17:39:16.980496: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
  31. 2020-06-26 17:39:16.980536: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
  32. 2020-06-26 17:39:16.983887: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
  33. 2020-06-26 17:39:16.983981: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
  34. 2020-06-26 17:39:16.987830: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1102] Device interconnect StreamExecutor with strength 1 edge matrix:
  35. 2020-06-26 17:39:16.987872: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1108] 0
  36. 2020-06-26 17:39:16.987895: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1121] 0: N
  37. 2020-06-26 17:39:16.992283: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1247] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 10666 MB memory) -> physical GPU (device: 0, name: TITAN V, pci bus id: 0000:68:00.0, compute capability: 7.0)
  38. 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:359 - datasetPath = /root/data-cache/data/tmp/ota-cfo-full
  39. 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:360 - outputPath = /root/data-cache/data/tmp/
  40. 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:365 - path_name = /root/data-cache/data/tmp/models/
  41. 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:366 - model_name = ota-cfo-full_20200626-173916
  42. 2020-06-26 17:39:16,998 - DEBUG - train_spectrogram_cnn.py:main:385 - Loaded 237504 Examples...(190003 train / 23751 validate) 5937 batches of size 32
  43. 2020-06-26 17:39:33,093 - DEBUG - train_spectrogram_cnn.py:main:451 - Building the model
  44. 2020-06-26 17:39:33,208 - DEBUG - train_spectrogram_cnn.py:main:497 - Compiling the model
  45. 2020-06-26 17:39:33,219 - DEBUG - train_spectrogram_cnn.py:main:502 - None
  46. 2020-06-26 17:39:33.220014: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session started.
  47. 2020-06-26 17:39:33.220079: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1363] Profiler found 1 GPUs
  48. 2020-06-26 17:39:33.220849: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcupti.so.10.1
  49. 2020-06-26 17:39:33.317427: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1479] CUPTI activity buffer flushed
  50. 2020-06-26 17:39:33,317 - DEBUG - train_spectrogram_cnn.py:main:513 - early stopping with patience = 10
  51. 2020-06-26 17:39:33.852258: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
  52. 2020-06-26 17:39:42.836579: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
  53. 2020-06-26 17:39:45.188834: I tensorflow/core/profiler/lib/profiler_session.cc:159] Profiler session started.
  54. 1 Physical GPUs, 1 Logical GPUs
  55. Model: "sequential"
  56. _________________________________________________________________
  57. Layer (type) Output Shape Param #
  58. =================================================================
  59. conv2d (Conv2D) (None, 254, 254, 64) 640
  60. _________________________________________________________________
  61. max_pooling2d (MaxPooling2D) (None, 127, 127, 64) 0
  62. _________________________________________________________________
  63. conv2d_1 (Conv2D) (None, 125, 125, 64) 36928
  64. _________________________________________________________________
  65. max_pooling2d_1 (MaxPooling2 (None, 62, 62, 64) 0
  66. _________________________________________________________________
  67. conv2d_2 (Conv2D) (None, 60, 60, 64) 36928
  68. _________________________________________________________________
  69. max_pooling2d_2 (MaxPooling2 (None, 30, 30, 64) 0
  70. _________________________________________________________________
  71. conv2d_3 (Conv2D) (None, 28, 28, 64) 36928
  72. _________________________________________________________________
  73. max_pooling2d_3 (MaxPooling2 (None, 14, 14, 64) 0
  74. _________________________________________________________________
  75. conv2d_4 (Conv2D) (None, 12, 12, 128) 73856
  76. _________________________________________________________________
  77. max_pooling2d_4 (MaxPooling2 (None, 6, 6, 128) 0
  78. _________________________________________________________________
  79. conv2d_5 (Conv2D) (None, 4, 4, 128) 147584
  80. _________________________________________________________________
  81. max_pooling2d_5 (MaxPooling2 (None, 2, 2, 128) 0
  82. _________________________________________________________________
  83. flatten (Flatten) (None, 512) 0
  84. _________________________________________________________________
  85. dense (Dense) (None, 128) 65664
  86. _________________________________________________________________
  87. scores (Dense) (None, 6) 774
  88. =================================================================
  89. Total params: 399,302
  90. Trainable params: 399,302
  91. Non-trainable params: 0
  92. _________________________________________________________________
  93. Epoch 1/100
  94.  
  95. 1/5938 [..............................] - ETA: 0s - loss: 1.7893 - accuracy: 0.31252020-06-26 17:39:45.253972: I tensorflow/core/profiler/internal/gpu/cupti_tracer.cc:1479] CUPTI activity buffer flushed
  96. 2020-06-26 17:39:45.255588: I tensorflow/core/profiler/internal/gpu/device_tracer.cc:216] GpuTracer has collected 179 callback api events and 179 activity events.
  97. 2020-06-26 17:39:45.276306: I tensorflow/core/profiler/rpc/client/save_profile.cc:168] Creating directory: /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45
  98. 2020-06-26 17:39:45.284235: I tensorflow/core/profiler/rpc/client/save_profile.cc:174] Dumped gzipped tool data for trace.json.gz to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.trace.json.gz
  99. 2020-06-26 17:39:45.286639: I tensorflow/core/profiler/utils/event_span.cc:288] Generation of step-events took 0.049 ms
  100.  
  101. 2020-06-26 17:39:45.288257: I tensorflow/python/profiler/internal/profiler_wrapper.cc:87] Creating directory: /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45Dumped tool data for overview_page.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.overview_page.pb
  102. Dumped tool data for input_pipeline.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.input_pipeline.pb
  103. Dumped tool data for tensorflow_stats.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.tensorflow_stats.pb
  104. Dumped tool data for kernel_stats.pb to /root/data-cache/data/tmp/20200626-173933/train/plugins/profile/2020_06_26_17_39_45/ddfc870f32d1.kernel_stats.pb
  105.  
  106. 
  107. 2/5938 [..............................] - ETA: 6:24 - loss: 1.7824 - accuracy: 0.2656
  108. 3/5938 [..............................] - ETA: 17:03 - loss: 1.7562 - accuracy: 0.2396
  109. 4/5938 [..............................] - ETA: 22:27 - loss: 1.7368 - accuracy: 0.2344
  110. 5/5938 [..............................] - ETA: 22:55 - loss: 1.7387 - accuracy: 0.2375
  111. 6/5938 [..............................] - ETA: 24:16 - loss: 1.7175 - accuracy: 0.2656
  112. 7/5938 [..............................] - ETA: 24:34 - loss: 1.6885 - accuracy: 0.2812
  113. 8/5938 [..............................] - ETA: 24:32 - loss: 1.6912 - accuracy: 0.2812
  114. 9/5938 [..............................] - ETA: 26:09 - loss: 1.6738 - accuracy: 0.2986
  115. 10/5938 [..............................] - ETA: 27:05 - loss: 1.6647 - accuracy: 0.3156
  116. 11/5938 [..............................] - ETA: 26:12 - loss: 1.6422 - accuracy: 0.3438
  117. 12/5938 [..............................] - ETA: 26:14 - loss: 1.6436 - accuracy: 0.3359
  118. 13/5938 [..............................] - ETA: 26:39 - loss: 1.6504 - accuracy: 0.3317
  119. 14/5938 [..............................] - ETA: 26:36 - loss: 1.6402 - accuracy: 0.3326
  120. 15/5938 [..............................] - ETA: 26:30 - loss: 1.6349 - accuracy: 0.3354
  121. 16/5938 [..............................] - ETA: 26:26 - loss: 1.6374 - accuracy: 0.3340
  122. 17/5938 [..............................] - ETA: 25:57 - loss: 1.6391 - accuracy: 0.3346
  123. 18/5938 [..............................] - ETA: 26:15 - loss: 1.6396 - accuracy: 0.3351
  124. 19/5938 [..............................] - ETA: 26:07 - loss: 1.6390 - accuracy: 0.3355
  125. 20/5938 [..............................] - ETA: 25:59 - loss: 1.6352 - accuracy: 0.3375
  126. 21/5938 [..............................] - ETA: 26:16 - loss: 1.6262 - accuracy: 0.3467
  127. 22/5938 [..............................] - ETA: 25:34 - loss: 1.6244 - accuracy: 0.3466
  128. 23/5938 [..............................] - ETA: 25:57 - loss: 1.6232 - accuracy: 0.3492
  129. 24/5938 [..............................] - ETA: 26:01 - loss: 1.6177 - accuracy: 0.3529
  130. 25/5938 [..............................] - ETA: 26:09 - loss: 1.6064 - accuracy: 0.3600
  131. 26/5938 [..............................] - ETA: 26:16 - loss: 1.5983 - accuracy: 0.3642
  132. 27/5938 [..............................] - ETA: 25:56 - loss: 1.5939 - accuracy: 0.3657
  133. 28/5938 [..............................] - ETA: 26:01 - loss: 1.5812 - accuracy: 0.3705
  134. 29/5938 [..............................] - ETA: 25:57 - loss: 1.5835 - accuracy: 0.3718
  135. 30/5938 [..............................] - ETA: 25:52 - loss: 1.5856 - accuracy: 0.3688
  136. 31/5938 [..............................] - ETA: 25:55 - loss: 1.5833 - accuracy: 0.3669
  137. 32/5938 [..............................] - ETA: 25:58 - loss: 1.5751 - accuracy: 0.3701
  138. 33/5938 [..............................] - ETA: 26:04 - loss: 1.5705 - accuracy: 0.3703
  139. 34/5938 [..............................] - ETA: 26:18 - loss: 1.5659 - accuracy: 0.3713
  140. 35/5938 [..............................] - ETA: 26:13 - loss: 1.5613 - accuracy: 0.3732
  141. 36/5938 [..............................] - ETA: 26:09 - loss: 1.5597 - accuracy: 0.3698
  142. 37/5938 [..............................] - ETA: 26:15 - loss: 1.5533 - accuracy: 0.3742
  143. 38/5938 [..............................] - ETA: 26:15 - loss: 1.5486 - accuracy: 0.3758
  144. 39/5938 [..............................] - ETA: 26:15 - loss: 1.5451 - accuracy: 0.3774
  145. 40/5938 [..............................] - ETA: 26:17 - loss: 1.5377 - accuracy: 0.3805
  146. 41/5938 [..............................] - ETA: 25:58 - loss: 1.5319 - accuracy: 0.3826
  147. 42/5938 [..............................] - ETA: 26:11 - loss: 1.5273 - accuracy: 0.3824
  148. 43/5938 [..............................] - ETA: 26:03 - loss: 1.5222 - accuracy: 0.3830
  149. 44/5938 [..............................] - ETA: 26:08 - loss: 1.5221 - accuracy: 0.3800
  150. 45/5938 [..............................] - ETA: 25:59 - loss: 1.5198 - accuracy: 0.3812
  151. 46/5938 [..............................] - ETA: 26:05 - loss: 1.5122 - accuracy: 0.3859
  152. 47/5938 [..............................] - ETA: 26:05 - loss: 1.5079 - accuracy: 0.3883
  153. 48/5938 [..............................] - ETA: 26:07 - loss: 1.5039 - accuracy: 0.3913
  154. 49/5938 [..............................] - ETA: 26:00 - loss: 1.5013 - accuracy: 0.3922
  155. 50/5938 [..............................] - ETA: 26:03 - loss: 1.4974 - accuracy: 0.3950
  156. 51/5938 [..............................] - ETA: 26:00 - loss: 1.4876 - accuracy: 0.3977
  157. 52/5938 [..............................] - ETA: 25:54 - loss: 1.4839 - accuracy: 0.4002
  158. 53/5938 [..............................] - ETA: 26:07 - loss: 1.4791 - accuracy: 0.4015
  159. 54/5938 [..............................] - ETA: 25:58 - loss: 1.4706 - accuracy: 0.4045
  160. 55/5938 [..............................] - ETA: 25:54 - loss: 1.4640 - accuracy: 0.4062
  161. 56/5938 [..............................] - ETA: 25:58 - loss: 1.4623 - accuracy: 0.4057
  162. 57/5938 [..............................] - ETA: 25:54 - loss: 1.4579 - accuracy: 0.4073
  163. 58/5938 [..............................] - ETA: 25:54 - loss: 1.4559 - accuracy: 0.4068
  164. 59/5938 [..............................] - ETA: 25:43 - loss: 1.4514 - accuracy: 0.4094
  165. 60/5938 [..............................] - ETA: 25:57 - loss: 1.4490 - accuracy: 0.4104
  166. 61/5938 [..............................] - ETA: 25:58 - loss: 1.4439 - accuracy: 0.4124
  167. 62/5938 [..............................] - ETA: 25:58 - loss: 1.4385 - accuracy: 0.4123
  168. 63/5938 [..............................] - ETA: 25:54 - loss: 1.4369 - accuracy: 0.4122
  169. 64/5938 [..............................] - ETA: 25:56 - loss: 1.4321 - accuracy: 0.4160
  170. 65/5938 [..............................] - ETA: 25:44 - loss: 1.4278 - accuracy: 0.4168
  171. 66/5938 [..............................] - ETA: 25:54 - loss: 1.4263 - accuracy: 0.4176
  172. 67/5938 [..............................] - ETA: 25:54 - loss: 1.4199 - accuracy: 0.4198
  173. 68/5938 [..............................] - ETA: 25:47 - loss: 1.4127 - accuracy: 0.4228
  174. 69/5938 [..............................] - ETA: 25:40 - loss: 1.4086 - accuracy: 0.4244
  175. 70/5938 [..............................] - ETA: 25:47 - loss: 1.4032 - accuracy: 0.4272
  176. 71/5938 [..............................] - ETA: 25:49 - loss: 1.3965 - accuracy: 0.4305
  177. 72/5938 [..............................] - ETA: 25:55 - loss: 1.3906 - accuracy: 0.4327
  178. 73/5938 [..............................] - ETA: 25:53 - loss: 1.3869 - accuracy: 0.4345
  179. 74/5938 [..............................] - ETA: 25:50 - loss: 1.3853 - accuracy: 0.4345
  180. 75/5938 [..............................] - ETA: 25:56 - loss: 1.3810 - accuracy: 0.4358
  181. 76/5938 [..............................] - ETA: 25:52 - loss: 1.3763 - accuracy: 0.4363
  182. 77/5938 [..............................] - ETA: 25:45 - loss: 1.3730 - accuracy: 0.4371
  183. 78/5938 [..............................] - ETA: 25:53 - loss: 1.3697 - accuracy: 0.4387
  184. 79/5938 [..............................] - ETA: 25:54 - loss: 1.3661 - accuracy: 0.4407
  185. 80/5938 [..............................] - ETA: 25:53 - loss: 1.3628 - accuracy: 0.4414
  186. 81/5938 [..............................] - ETA: 25:50 - loss: 1.3610 - accuracy: 0.4414
  187. 82/5938 [..............................] - ETA: 25:47 - loss: 1.3579 - accuracy: 0.4444
  188. 83/5938 [..............................] - ETA: 25:50 - loss: 1.3541 - accuracy: 0.4458
  189. 84/5938 [..............................] - ETA: 25:54 - loss: 1.3499 - accuracy: 0.4487
  190. 85/5938 [..............................] - ETA: 25:48 - loss: 1.3460 - accuracy: 0.4496
  191. 86/5938 [..............................] - ETA: 25:50 - loss: 1.3456 - accuracy: 0.4488
  192. 87/5938 [..............................] - ETA: 25:46 - loss: 1.3418 - accuracy: 0.4508
  193. 88/5938 [..............................] - ETA: 25:49 - loss: 1.3397 - accuracy: 0.4521
  194. 89/5938 [..............................] - ETA: 25:52 - loss: 1.3341 - accuracy: 0.4551
  195. 90/5938 [..............................] - ETA: 25:45 - loss: 1.3292 - accuracy: 0.4566
  196. 91/5938 [..............................] - ETA: 25:45 - loss: 1.3243 - accuracy: 0.4588
  197. 92/5938 [..............................] - ETA: 25:45 - loss: 1.3220 - accuracy: 0.4606
  198. 93/5938 [..............................] - ETA: 25:44 - loss: 1.3166 - accuracy: 0.4624
  199. 94/5938 [..............................] - ETA: 25:44 - loss: 1.3106 - accuracy: 0.4654
  200. 95/5938 [..............................] - ETA: 25:47 - loss: 1.3052 - accuracy: 0.4661
  201. 96/5938 [..............................] - ETA: 25:44 - loss: 1.3007 - accuracy: 0.4684
  202. 97/5938 [..............................] - ETA: 25:36 - loss: 1.2977 - accuracy: 0.4700
  203. 98/5938 [..............................] - ETA: 25:37 - loss: 1.2922 - accuracy: 0.4723
  204. 99/5938 [..............................] - ETA: 25:40 - loss: 1.2883 - accuracy: 0.4732
  205. 100/5938 [..............................] - ETA: 25:44 - loss: 1.2856 - accuracy: 0.4747
  206. 101/5938 [..............................] - ETA: 25:45 - loss: 1.2814 - accuracy: 0.4749
  207. 102/5938 [..............................] - ETA: 25:37 - loss: 1.2764 - accuracy: 0.4767
  208. 103/5938 [..............................] - ETA: 25:41 - loss: 1.2716 - accuracy: 0.4775
  209. 104/5938 [..............................] - ETA: 25:40 - loss: 1.2684 - accuracy: 0.4784
  210. 105/5938 [..............................] - ETA: 25:40 - loss: 1.2642 - accuracy: 0.4798
  211. 106/5938 [..............................] - ETA: 25:38 - loss: 1.2614 - accuracy: 0.4820
  212. 107/5938 [..............................] - ETA: 25:35 - loss: 1.2571 - accuracy: 0.4828
  213. 108/5938 [..............................] - ETA: 25:40 - loss: 1.2522 - accuracy: 0.4852
  214. 109/5938 [..............................] - ETA: 25:40 - loss: 1.2483 - accuracy: 0.4862
  215. 110/5938 [..............................] - ETA: 25:36 - loss: 1.2431 - accuracy: 0.4881
  216. 111/5938 [..............................] - ETA: 25:36 - loss: 1.2393 - accuracy: 0.4893
  217. 112/5938 [..............................] - ETA: 25:33 - loss: 1.2373 - accuracy: 0.4908
  218. 113/5938 [..............................] - ETA: 25:32 - loss: 1.2341 - accuracy: 0.4925
  219. 114/5938 [..............................] - ETA: 25:32 - loss: 1.2303 - accuracy: 0.4940
  220. 115/5938 [..............................] - ETA: 25:34 - loss: 1.2263 - accuracy: 0.4959
  221. 116/5938 [..............................] - ETA: 25:36 - loss: 1.2227 - accuracy: 0.4978
  222. 117/5938 [..............................] - ETA: 25:35 - loss: 1.2186 - accuracy: 0.5003
  223. 118/5938 [..............................] - ETA: 25:34 - loss: 1.2155 - accuracy: 0.5024
  224. 119/5938 [..............................] - ETA: 25:35 - loss: 1.2137 - accuracy: 0.5029
  225. 120/5938 [..............................] - ETA: 25:37 - loss: 1.2115 - accuracy: 0.5047
  226. 121/5938 [..............................] - ETA: 25:34 - loss: 1.2071 - accuracy: 0.5065
  227. 122/5938 [..............................] - ETA: 25:36 - loss: 1.2040 - accuracy: 0.5082
  228. 123/5938 [..............................] - ETA: 25:40 - loss: 1.2012 - accuracy: 0.5089
  229. 124/5938 [..............................] - ETA: 25:36 - loss: 1.1981 - accuracy: 0.5093
  230. 125/5938 [..............................] - ETA: 25:35 - loss: 1.1971 - accuracy: 0.5100
  231. 126/5938 [..............................] - ETA: 25:35 - loss: 1.1950 - accuracy: 0.5112
  232. 127/5938 [..............................] - ETA: 25:30 - loss: 1.1915 - accuracy: 0.5123
  233. 128/5938 [..............................] - ETA: 25:33 - loss: 1.1881 - accuracy: 0.5137
  234. 129/5938 [..............................] - ETA: 25:30 - loss: 1.1841 - accuracy: 0.5153
  235. 130/5938 [..............................] - ETA: 25:30 - loss: 1.1815 - accuracy: 0.5171
  236. 131/5938 [..............................] - ETA: 25:30 - loss: 1.1780 - accuracy: 0.5186
  237. 132/5938 [..............................] - ETA: 25:26 - loss: 1.1743 - accuracy: 0.5201
  238. 133/5938 [..............................] - ETA: 25:27 - loss: 1.1704 - accuracy: 0.5221
  239. 134/5938 [..............................] - ETA: 25:24 - loss: 1.1670 - accuracy: 0.5240
  240. 135/5938 [..............................] - ETA: 25:26 - loss: 1.1644 - accuracy: 0.5248
  241. 136/5938 [..............................] - ETA: 25:25 - loss: 1.1630 - accuracy: 0.5246
  242. 137/5938 [..............................] - ETA: 25:23 - loss: 1.1614 - accuracy: 0.5246
  243. 138/5938 [..............................] - ETA: 25:25 - loss: 1.1567 - accuracy: 0.5263
  244. 139/5938 [..............................] - ETA: 25:27 - loss: 1.1521 - accuracy: 0.5283
  245. 140/5938 [..............................] - ETA: 25:28 - loss: 1.1491 - accuracy: 0.5295
  246. 141/5938 [..............................] - ETA: 25:22 - loss: 1.1463 - accuracy: 0.5304
  247. 142/5938 [..............................] - ETA: 25:26 - loss: 1.1442 - accuracy: 0.5321
  248. 143/5938 [..............................] - ETA: 25:28 - loss: 1.1398 - accuracy: 0.5341
  249. 144/5938 [..............................] - ETA: 25:23 - loss: 1.1375 - accuracy: 0.5345
  250. 145/5938 [..............................] - ETA: 25:23 - loss: 1.1356 - accuracy: 0.5347
  251. 146/5938 [..............................] - ETA: 25:25 - loss: 1.1351 - accuracy: 0.5353
  252. 147/5938 [..............................] - ETA: 25:22 - loss: 1.1321 - accuracy: 0.5364
  253. 148/5938 [..............................] - ETA: 25:24 - loss: 1.1285 - accuracy: 0.5376
  254. 149/5938 [..............................] - ETA: 25:25 - loss: 1.1257 - accuracy: 0.5394
  255. 150/5938 [..............................] - ETA: 25:21 - loss: 1.1232 - accuracy: 0.5406
  256. 151/5938 [..............................] - ETA: 25:23 - loss: 1.1243 - accuracy: 0.5410
  257. 152/5938 [..............................] - ETA: 25:25 - loss: 1.1227 - accuracy: 0.5417
  258. 153/5938 [..............................] - ETA: 25:25 - loss: 1.1185 - accuracy: 0.5433
  259. 154/5938 [..............................] - ETA: 25:28 - loss: 1.1157 - accuracy: 0.5440
  260. 155/5938 [..............................] - ETA: 25:23 - loss: 1.1124 - accuracy: 0.5452
  261. 156/5938 [..............................] - ETA: 25:22 - loss: 1.1118 - accuracy: 0.5451
  262. 157/5938 [..............................] - ETA: 25:24 - loss: 1.1099 - accuracy: 0.5456
  263. 158/5938 [..............................] - ETA: 25:25 - loss: 1.1067 - accuracy: 0.5465
  264. 159/5938 [..............................] - ETA: 25:26 - loss: 1.1054 - accuracy: 0.5474
  265. 160/5938 [..............................] - ETA: 25:25 - loss: 1.1037 - accuracy: 0.5482
  266. 161/5938 [..............................] - ETA: 25:25 - loss: 1.1022 - accuracy: 0.5487
  267. 162/5938 [..............................] - ETA: 25:21 - loss: 1.1000 - accuracy: 0.5498
  268. 163/5938 [..............................] - ETA: 25:21 - loss: 1.0963 - accuracy: 0.5516
  269. 164/5938 [..............................] - ETA: 25:19 - loss: 1.0958 - accuracy: 0.5520
  270. 165/5938 [..............................] - ETA: 25:21 - loss: 1.0927 - accuracy: 0.5532
  271. 166/5938 [..............................] - ETA: 25:23 - loss: 1.0902 - accuracy: 0.5544
  272. 167/5938 [..............................] - ETA: 25:20 - loss: 1.0878 - accuracy: 0.5554
  273. 168/5938 [..............................] - ETA: 25:23 - loss: 1.0852 - accuracy: 0.5560
  274. 169/5938 [..............................] - ETA: 25:21 - loss: 1.0830 - accuracy: 0.5570
  275. 170/5938 [..............................] - ETA: 25:19 - loss: 1.0790 - accuracy: 0.5588
  276. 171/5938 [..............................] - ETA: 25:20 - loss: 1.0761 - accuracy: 0.5601
  277. 172/5938 [..............................] - ETA: 25:20 - loss: 1.0741 - accuracy: 0.5614
  278. 173/5938 [..............................] - ETA: 25:19 - loss: 1.0725 - accuracy: 0.5616
  279. 174/5938 [..............................] - ETA: 25:20 - loss: 1.0709 - accuracy: 0.5616
  280. 175/5938 [..............................] - ETA: 25:22 - loss: 1.0676 - accuracy: 0.5629
  281. 176/5938 [..............................] - ETA: 25:24 - loss: 1.0650 - accuracy: 0.5643
  282. 177/5938 [..............................] - ETA: 25:22 - loss: 1.0627 - accuracy: 0.5650
  283. 178/5938 [..............................] - ETA: 25:23 - loss: 1.0629 - accuracy: 0.5651
  284. 179/5938 [..............................] - ETA: 25:24 - loss: 1.0589 - accuracy: 0.5672
  285. 180/5938 [..............................] - ETA: 25:22 - loss: 1.0565 - accuracy: 0.5681
  286. 181/5938 [..............................] - ETA: 25:24 - loss: 1.0541 - accuracy: 0.5691
  287. 182/5938 [..............................] - ETA: 25:24 - loss: 1.0527 - accuracy: 0.5695
  288. 183/5938 [..............................] - ETA: 25:21 - loss: 1.0511 - accuracy: 0.5704
  289. 184/5938 [..............................] - ETA: 25:37 - loss: 1.0478 - accuracy: 0.5718
  290. 185/5938 [..............................] - ETA: 25:41 - loss: 1.0452 - accuracy: 0.5730
  291. 186/5938 [..............................] - ETA: 25:50 - loss: 1.0424 - accuracy: 0.5741
  292. 187/5938 [..............................] - ETA: 25:58 - loss: 1.0396 - accuracy: 0.5754
  293. 188/5938 [..............................] - ETA: 26:08 - loss: 1.0370 - accuracy: 0.5765
  294. 189/5938 [..............................] - ETA: 26:11 - loss: 1.0339 - accuracy: 0.5775
  295. 190/5938 [..............................] - ETA: 26:15 - loss: 1.0315 - accuracy: 0.5786
  296. 191/5938 [..............................] - ETA: 26:27 - loss: 1.0286 - accuracy: 0.5792
  297. 192/5938 [..............................] - ETA: 26:34 - loss: 1.0254 - accuracy: 0.5807
  298. 193/5938 [..............................] - ETA: 26:59 - loss: 1.0238 - accuracy: 0.5813
  299. 194/5938 [..............................] - ETA: 27:03 - loss: 1.0212 - accuracy: 0.5825
  300. 195/5938 [..............................] - ETA: 27:10 - loss: 1.0171 - accuracy: 0.5840
  301. 196/5938 [..............................] - ETA: 27:29 - loss: 1.0146 - accuracy: 0.5847
  302. 197/5938 [..............................] - ETA: 27:48 - loss: 1.0124 - accuracy: 0.5855
  303. 198/5938 [>.............................] - ETA: 27:53 - loss: 1.0100 - accuracy: 0.5866
  304. 199/5938 [>.............................] - ETA: 27:54 - loss: 1.0073 - accuracy: 0.5878
  305. 200/5938 [>.............................] - ETA: 28:04 - loss: 1.0045 - accuracy: 0.5889
  306. 201/5938 [>.............................] - ETA: 28:22 - loss: 1.0021 - accuracy: 0.5894
  307. 202/5938 [>.............................] - ETA: 28:17 - loss: 0.9998 - accuracy: 0.5899
  308. 203/5938 [>.............................] - ETA: 28:27 - loss: 0.9975 - accuracy: 0.5907
  309. 204/5938 [>.............................] - ETA: 28:43 - loss: 0.9941 - accuracy: 0.5921
  310. 205/5938 [>.............................] - ETA: 28:52 - loss: 0.9915 - accuracy: 0.5930
  311. 206/5938 [>.............................] - ETA: 28:54 - loss: 0.9885 - accuracy: 0.5942
  312. 207/5938 [>.............................] - ETA: 29:03 - loss: 0.9858 - accuracy: 0.5951
  313. 208/5938 [>.............................] - ETA: 29:12 - loss: 0.9846 - accuracy: 0.5954
  314. 209/5938 [>.............................] - ETA: 29:12 - loss: 0.9811 - accuracy: 0.5969
  315. 210/5938 [>.............................] - ETA: 29:20 - loss: 0.9779 - accuracy: 0.5982
  316. 211/5938 [>.............................] - ETA: 29:28 - loss: 0.9762 - accuracy: 0.5988
  317. 212/5938 [>.............................] - ETA: 29:34 - loss: 0.9729 - accuracy: 0.6002
  318. 213/5938 [>.............................] - ETA: 29:43 - loss: 0.9706 - accuracy: 0.6014
  319. 214/5938 [>.............................] - ETA: 29:51 - loss: 0.9679 - accuracy: 0.6028
  320. 215/5938 [>.............................] - ETA: 30:04 - loss: 0.9657 - accuracy: 0.6036
  321. 216/5938 [>.............................] - ETA: 29:58 - loss: 0.9637 - accuracy: 0.6046
  322. 217/5938 [>.............................] - ETA: 30:16 - loss: 0.9622 - accuracy: 0.6051
  323. 218/5938 [>.............................] - ETA: 30:29 - loss: 0.9609 - accuracy: 0.6059
  324. 219/5938 [>.............................] - ETA: 30:40 - loss: 0.9581 - accuracy: 0.6073
  325. 220/5938 [>.............................] - ETA: 30:42 - loss: 0.9554 - accuracy: 0.6085
  326. 221/5938 [>.............................] - ETA: 31:12 - loss: 0.9526 - accuracy: 0.6099
  327. 222/5938 [>.............................] - ETA: 31:26 - loss: 0.9518 - accuracy: 0.6106
  328. 223/5938 [>.............................] - ETA: 31:20 - loss: 0.9488 - accuracy: 0.6122
  329. 224/5938 [>.............................] - ETA: 31:37 - loss: 0.9462 - accuracy: 0.6137
  330. 225/5938 [>.............................] - ETA: 31:40 - loss: 0.9484 - accuracy: 0.6142
  331. 226/5938 [>.............................] - ETA: 31:47 - loss: 0.9456 - accuracy: 0.6153
  332. 227/5938 [>.............................] - ETA: 31:54 - loss: 0.9437 - accuracy: 0.6161
  333. 228/5938 [>.............................] - ETA: 31:52 - loss: 0.9417 - accuracy: 0.6169
  334. 229/5938 [>.............................] - ETA: 32:01 - loss: 0.9400 - accuracy: 0.6175
  335. 230/5938 [>.............................] - ETA: 32:02 - loss: 0.9386 - accuracy: 0.6183
  336. 231/5938 [>.............................] - ETA: 32:06 - loss: 0.9390 - accuracy: 0.6184
  337. 232/5938 [>.............................] - ETA: 32:20 - loss: 0.9375 - accuracy: 0.6192
  338. 233/5938 [>.............................] - ETA: 32:15 - loss: 0.9366 - accuracy: 0.6199
  339. 234/5938 [>.............................] - ETA: 32:23 - loss: 0.9350 - accuracy: 0.6209
  340. 235/5938 [>.............................] - ETA: 32:51 - loss: 0.9328 - accuracy: 0.6217
  341. 236/5938 [>.............................] - ETA: 32:46 - loss: 0.9326 - accuracy: 0.6220
  342. 237/5938 [>.............................] - ETA: 32:57 - loss: 0.9303 - accuracy: 0.6230
  343. 238/5938 [>.............................] - ETA: 33:21 - loss: 0.9294 - accuracy: 0.6233
  344. 239/5938 [>.............................] - ETA: 33:23 - loss: 0.9274 - accuracy: 0.6240
  345. 240/5938 [>.............................] - ETA: 33:26 - loss: 0.9256 - accuracy: 0.6245
  346. 241/5938 [>.............................] - ETA: 33:31 - loss: 0.9233 - accuracy: 0.6255
  347. 242/5938 [>.............................] - ETA: 33:33 - loss: 0.9222 - accuracy: 0.6259
  348. 243/5938 [>.............................] - ETA: 33:38 - loss: 0.9215 - accuracy: 0.6264
  349. 244/5938 [>.............................] - ETA: 33:49 - loss: 0.9229 - accuracy: 0.6268
  350. 245/5938 [>.............................] - ETA: 33:55 - loss: 0.9215 - accuracy: 0.6274
  351. 246/5938 [>.............................] - ETA: 34:24 - loss: 0.9210 - accuracy: 0.6278
  352. 247/5938 [>.............................] - ETA: 34:27 - loss: 0.9199 - accuracy: 0.6283
  353. 248/5938 [>.............................] - ETA: 34:29 - loss: 0.9189 - accuracy: 0.6289
  354. 249/5938 [>.............................] - ETA: 34:36 - loss: 0.9171 - accuracy: 0.6295
  355. 250/5938 [>.............................] - ETA: 34:56 - loss: 0.9168 - accuracy: 0.6294
  356. 251/5938 [>.............................] - ETA: 34:50 - loss: 0.9157 - accuracy: 0.6299
  357. 252/5938 [>.............................] - ETA: 35:02 - loss: 0.9142 - accuracy: 0.6303
  358. 253/5938 [>.............................] - ETA: 35:11 - loss: 0.9129 - accuracy: 0.6309
  359. 254/5938 [>.............................] - ETA: 35:06 - loss: 0.9119 - accuracy: 0.6312
  360. 255/5938 [>.............................] - ETA: 35:14 - loss: 0.9110 - accuracy: 0.6313
  361. 256/5938 [>.............................] - ETA: 35:23 - loss: 0.9100 - accuracy: 0.6320
  362. 257/5938 [>.............................] - ETA: 35:29 - loss: 0.9088 - accuracy: 0.6325
  363. 258/5938 [>.............................] - ETA: 35:28 - loss: 0.9080 - accuracy: 0.6328
  364. 259/5938 [>.............................] - ETA: 35:40 - loss: 0.9065 - accuracy: 0.6336
  365. 260/5938 [>.............................] - ETA: 35:44 - loss: 0.9055 - accuracy: 0.6340
  366. 261/5938 [>.............................] - ETA: 35:45 - loss: 0.9042 - accuracy: 0.6345
  367. 262/5938 [>.............................] - ETA: 35:54 - loss: 0.9031 - accuracy: 0.6349
  368. 263/5938 [>.............................] - ETA: 35:52 - loss: 0.9019 - accuracy: 0.6358
  369. 264/5938 [>.............................] - ETA: 36:21 - loss: 0.9012 - accuracy: 0.6361
  370. 265/5938 [>.............................] - ETA: 36:29 - loss: 0.8989 - accuracy: 0.6375
  371. 266/5938 [>.............................] - ETA: 36:37 - loss: 0.8965 - accuracy: 0.6386
  372. 267/5938 [>.............................] - ETA: 36:46 - loss: 0.8945 - accuracy: 0.6395
  373. 268/5938 [>.............................] - ETA: 36:39 - loss: 0.8927 - accuracy: 0.6404
  374. 269/5938 [>.............................] - ETA: 36:56 - loss: 0.8908 - accuracy: 0.6411
  375. 270/5938 [>.............................] - ETA: 37:07 - loss: 0.8916 - accuracy: 0.6418
  376. 271/5938 [>.............................] - ETA: 37:05 - loss: 0.8900 - accuracy: 0.6425
  377. 272/5938 [>.............................] - ETA: 37:08 - loss: 0.8881 - accuracy: 0.6433
  378. 273/5938 [>.............................] - ETA: 37:13 - loss: 0.8866 - accuracy: 0.6439
  379. 274/5938 [>.............................] - ETA: 37:18 - loss: 0.8857 - accuracy: 0.6443
  380. 275/5938 [>.............................] - ETA: 37:29 - loss: 0.8839 - accuracy: 0.6450
  381. 276/5938 [>.............................] - ETA: 37:23 - loss: 0.8824 - accuracy: 0.6455
  382. 277/5938 [>.............................] - ETA: 37:32 - loss: 0.8800 - accuracy: 0.6464
  383. 278/5938 [>.............................] - ETA: 37:42 - loss: 0.8784 - accuracy: 0.6473
  384. 279/5938 [>.............................] - ETA: 37:37 - loss: 0.8764 - accuracy: 0.6482
  385. 280/5938 [>.............................] - ETA: 37:42 - loss: 0.8747 - accuracy: 0.6490
  386. 281/5938 [>.............................] - ETA: 38:02 - loss: 0.8724 - accuracy: 0.6499
  387. 282/5938 [>.............................] - ETA: 37:58 - loss: 0.8708 - accuracy: 0.6507
  388. 283/5938 [>.............................] - ETA: 38:05 - loss: 0.8691 - accuracy: 0.6515
  389. 284/5938 [>.............................] - ETA: 38:24 - loss: 0.8671 - accuracy: 0.6523
  390. 285/5938 [>.............................] - ETA: 38:20 - loss: 0.8650 - accuracy: 0.6532
  391. 286/5938 [>.............................] - ETA: 38:47 - loss: 0.8645 - accuracy: 0.6541
  392. 287/5938 [>.............................] - ETA: 38:58 - loss: 0.8628 - accuracy: 0.6547
  393. 288/5938 [>.............................] - ETA: 38:55 - loss: 0.8607 - accuracy: 0.6556
  394. 289/5938 [>.............................] - ETA: 39:02 - loss: 0.8586 - accuracy: 0.6565
  395. 290/5938 [>.............................] - ETA: 39:05 - loss: 0.8572 - accuracy: 0.6571
  396. 291/5938 [>.............................] - ETA: 39:30 - loss: 0.8557 - accuracy: 0.6576
  397. 292/5938 [>.............................] - ETA: 39:39 - loss: 0.8543 - accuracy: 0.6582
  398. 294/5938 [>.............................] - ETA: 39:41 - loss: 0.8518 - accuracy: 0.6593
  399. 295/5938 [>.............................] - ETA: 39:56 - loss: 0.8501 - accuracy: 0.6601
  400. 296/5938 [>.............................] - ETA: 40:03 - loss: 0.8485 - accuracy: 0.6607
  401. 297/5938 [>.............................] - ETA: 40:00 - loss: 0.8468 - accuracy: 0.6614
  402. 298/5938 [>.............................] - ETA: 40:05 - loss: 0.8453 - accuracy: 0.6618
  403. 299/5938 [>.............................] - ETA: 40:09 - loss: 0.8443 - accuracy: 0.6624
  404. 300/5938 [>.............................] - ETA: 40:13 - loss: 0.8426 - accuracy: 0.6632
  405. 301/5938 [>.............................] - ETA: 40:09 - loss: 0.8403 - accuracy: 0.6642
  406. 302/5938 [>.............................] - ETA: 40:13 - loss: 0.8385 - accuracy: 0.6650
  407. 303/5938 [>.............................] - ETA: 40:18 - loss: 0.8370 - accuracy: 0.6655
  408. 304/5938 [>.............................] - ETA: 40:17 - loss: 0.8351 - accuracy: 0.6662
  409. 305/5938 [>.............................] - ETA: 40:20 - loss: 0.8334 - accuracy: 0.6669
  410. 306/5938 [>.............................] - ETA: 40:22 - loss: 0.8312 - accuracy: 0.6678
  411. 307/5938 [>.............................] - ETA: 40:23 - loss: 0.8295 - accuracy: 0.6686
  412. 308/5938 [>.............................] - ETA: 40:44 - loss: 0.8282 - accuracy: 0.6693
  413. 309/5938 [>.............................] - ETA: 40:45 - loss: 0.8262 - accuracy: 0.6701
  414. 310/5938 [>.............................] - ETA: 40:53 - loss: 0.8244 - accuracy: 0.6709
  415. 311/5938 [>.............................] - ETA: 41:06 - loss: 0.8227 - accuracy: 0.6717
  416. 312/5938 [>.............................] - ETA: 41:10 - loss: 0.8212 - accuracy: 0.6724
  417. 313/5938 [>.............................] - ETA: 41:09 - loss: 0.8194 - accuracy: 0.6732
  418. 314/5938 [>.............................] - ETA: 41:24 - loss: 0.8177 - accuracy: 0.6740
  419. 315/5938 [>.............................] - ETA: 41:24 - loss: 0.8160 - accuracy: 0.6746
  420. 316/5938 [>.............................] - ETA: 41:23 - loss: 0.8145 - accuracy: 0.6751
  421. 317/5938 [>.............................] - ETA: 41:25 - loss: 0.8130 - accuracy: 0.6757
  422. 318/5938 [>.............................] - ETA: 41:26 - loss: 0.8119 - accuracy: 0.6759
  423. 319/5938 [>.............................] - ETA: 41:34 - loss: 0.8104 - accuracy: 0.6764
  424. 320/5938 [>.............................] - ETA: 41:32 - loss: 0.8089 - accuracy: 0.6771
  425. 321/5938 [>.............................] - ETA: 41:38 - loss: 0.8074 - accuracy: 0.6776
  426. 322/5938 [>.............................] - ETA: 41:43 - loss: 0.8055 - accuracy: 0.6783
  427. 323/5938 [>.............................] - ETA: 41:44 - loss: 0.8038 - accuracy: 0.6789
  428. 324/5938 [>.............................] - ETA: 41:46 - loss: 0.8021 - accuracy: 0.6796
  429. 325/5938 [>.............................] - ETA: 41:48 - loss: 0.8002 - accuracy: 0.6805
  430. 326/5938 [>.............................] - ETA: 41:58 - loss: 0.7988 - accuracy: 0.6811
  431. 327/5938 [>.............................] - ETA: 42:14 - loss: 0.7970 - accuracy: 0.6819
  432. 328/5938 [>.............................] - ETA: 42:09 - loss: 0.7950 - accuracy: 0.6826
  433. 329/5938 [>.............................] - ETA: 42:13 - loss: 0.7929 - accuracy: 0.6836
  434. 330/5938 [>.............................] - ETA: 42:23 - loss: 0.7911 - accuracy: 0.6842
  435. 331/5938 [>.............................] - ETA: 42:18 - loss: 0.7893 - accuracy: 0.6848
  436. 332/5938 [>.............................] - ETA: 42:18 - loss: 0.7880 - accuracy: 0.6852
  437. 333/5938 [>.............................] - ETA: 42:25 - loss: 0.7863 - accuracy: 0.6859
  438. 334/5938 [>.............................] - ETA: 42:26 - loss: 0.7855 - accuracy: 0.6864
  439. 335/5938 [>.............................] - ETA: 42:48 - loss: 0.7836 - accuracy: 0.6870
  440. 336/5938 [>.............................] - ETA: 42:59 - loss: 0.7821 - accuracy: 0.6879
  441. 337/5938 [>.............................] - ETA: 42:55 - loss: 0.7814 - accuracy: 0.6880
  442. 338/5938 [>.............................] - ETA: 42:57 - loss: 0.7801 - accuracy: 0.6884
  443. 339/5938 [>.............................] - ETA: 42:57 - loss: 0.7788 - accuracy: 0.6890
  444. 340/5938 [>.............................] - ETA: 42:57 - loss: 0.7771 - accuracy: 0.6897
  445. 341/5938 [>.............................] - ETA: 42:59 - loss: 0.7755 - accuracy: 0.6903
  446. 342/5938 [>.............................] - ETA: 42:53 - loss: 0.7739 - accuracy: 0.6911
  447. 343/5938 [>.............................] - ETA: 42:56 - loss: 0.7721 - accuracy: 0.6918
  448. 344/5938 [>.............................] - ETA: 42:57 - loss: 0.7705 - accuracy: 0.6924
  449. 345/5938 [>.............................] - ETA: 42:58 - loss: 0.7687 - accuracy: 0.6931
  450. 346/5938 [>.............................] - ETA: 42:58 - loss: 0.7671 - accuracy: 0.6936
  451. 347/5938 [>.............................] - ETA: 43:10 - loss: 0.7655 - accuracy: 0.6943
  452. 348/5938 [>.............................] - ETA: 43:16 - loss: 0.7639 - accuracy: 0.6950
  453. 349/5938 [>.............................] - ETA: 43:16 - loss: 0.7626 - accuracy: 0.6956
  454. 350/5938 [>.............................] - ETA: 43:14 - loss: 0.7611 - accuracy: 0.6961
  455. 351/5938 [>.............................] - ETA: 43:17 - loss: 0.7604 - accuracy: 0.6964
  456. 352/5938 [>.............................] - ETA: 43:19 - loss: 0.7599 - accuracy: 0.6965
  457. 353/5938 [>.............................] - ETA: 43:15 - loss: 0.7586 - accuracy: 0.6970
  458. 354/5938 [>.............................] - ETA: 43:31 - loss: 0.7574 - accuracy: 0.6974
  459. 355/5938 [>.............................] - ETA: 43:25 - loss: 0.7569 - accuracy: 0.6979
  460. 356/5938 [>.............................] - ETA: 43:42 - loss: 0.7560 - accuracy: 0.6982
  461. 357/5938 [>.............................] - ETA: 43:54 - loss: 0.7551 - accuracy: 0.6984
  462. 358/5938 [>.............................] - ETA: 43:49 - loss: 0.7550 - accuracy: 0.6984
  463. 359/5938 [>.............................] - ETA: 43:52 - loss: 0.7538 - accuracy: 0.6989
  464. 360/5938 [>.............................] - ETA: 43:58 - loss: 0.7526 - accuracy: 0.6993
  465. 361/5938 [>.............................] - ETA: 43:58 - loss: 0.7512 - accuracy: 0.7001
  466. 362/5938 [>.............................] - ETA: 44:06 - loss: 0.7502 - accuracy: 0.7005
  467. 363/5938 [>.............................] - ETA: 44:07 - loss: 0.7501 - accuracy: 0.7005
  468. 364/5938 [>.............................] - ETA: 44:13 - loss: 0.7493 - accuracy: 0.7008
  469. 365/5938 [>.............................] - ETA: 44:15 - loss: 0.7487 - accuracy: 0.7013
  470. 366/5938 [>.............................] - ETA: 44:10 - loss: 0.7482 - accuracy: 0.7014
  471. 367/5938 [>.............................] - ETA: 44:23 - loss: 0.7470 - accuracy: 0.7019
  472. 368/5938 [>.............................] - ETA: 44:27 - loss: 0.7457 - accuracy: 0.7024
  473. 369/5938 [>.............................] - ETA: 44:22 - loss: 0.7461 - accuracy: 0.7025
  474. 370/5938 [>.............................] - ETA: 44:45 - loss: 0.7461 - accuracy: 0.7026
  475. 371/5938 [>.............................] - ETA: 44:42 - loss: 0.7455 - accuracy: 0.7028
  476. 372/5938 [>.............................] - ETA: 44:40 - loss: 0.7448 - accuracy: 0.7033
  477. 373/5938 [>.............................] - ETA: 44:46 - loss: 0.7447 - accuracy: 0.7034
  478. 374/5938 [>.............................] - ETA: 44:42 - loss: 0.7442 - accuracy: 0.7039
  479. 375/5938 [>.............................] - ETA: 44:43 - loss: 0.7437 - accuracy: 0.7042
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement