Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 738, in __call__
- yield remote, remote.load_module(os.path.split(build_result.filename)[1])
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 702, in run_through_rpc
- costs = time_f(*args).results
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/runtime/module.py", line 357, in evaluator
- blob = feval(*args)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 3: TVMFuncCall
- 2: tvm::runtime::RPCWrappedFunc::operator()(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*) const
- 1: tvm::runtime::RPCClientSession::CallFunc(void*, TVMValue const*, int const*, int, std::function<void (tvm::runtime::TVMArgs)> const&)
- 0: tvm::runtime::RPCEndpoint::CallFunc(void*, TVMValue const*, int const*, int, std::function<void (tvm::runtime::TVMArgs)>)
- File "/tmp/tmpyloz6yj2/src/runtime/rpc/rpc_endpoint.cc", line 801
- TVMError:
- ---------------------------------------------------------------
- An error occurred during the execution of TVM.
- For more information, please see: https://tvm.apache.org/docs/errors.html
- ---------------------------------------------------------------
- Check failed: (code == RPCCode::kReturn) is false: code=kShutdown
- During handling of the above exception, another exception occurred:
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 702, in run_through_rpc
- costs = time_f(*args).results
- File "/usr/lib/python3.8/contextlib.py", line 131, in __exit__
- self.gen.throw(type, value, traceback)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 742, in __call__
- remote.remove(build_result.filename)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/rpc/client.py", line 143, in remove
- self._remote_funcs["remove"] = self.get_function("tvm.rpc.server.remove")
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/rpc/client.py", line 71, in get_function
- return self._sess.get_function(name)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/runtime/module.py", line 169, in get_function
- check_call(
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/base.py", line 348, in check_call
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 50: 0xffffffffffffffff
- 49: _start
- 48: __libc_start_main
- 47: Py_BytesMain
- 46: Py_RunMain
- 45: 0x0000000000677370
- 44: PyVectorcall_Call
- 43: _PyFunction_Vectorcall
- 42: _PyEval_EvalCodeWithName
- 41: 0x000000000049ec68
- 40: _PyFunction_Vectorcall
- 39: _PyEval_EvalCodeWithName
- 38: 0x000000000049ec68
- 37: 0x00000000005aa1b8
- 36: 0x000000000061c755
- 35: PyEval_EvalCode
- 34: _PyEval_EvalCodeWithName
- 33: 0x000000000049ec68
- 32: _PyFunction_Vectorcall
- 31: _PyEval_EvalCodeWithName
- 30: _PyEval_EvalFrameDefault
- 29: PyVectorcall_Call
- 28: _PyFunction_Vectorcall
- 27: _PyEval_EvalCodeWithName
- 26: _PyEval_EvalFrameDefault
- 25: 0x000000000046eb21
- 24: 0x00000000004fea57
- 23: _PyFunction_Vectorcall
- 22: 0x000000000049ca7b
- 21: 0x00000000004f7ccc
- 20: 0x00000000005e8238
- 19: 0x00000000005e8136
- 18: 0x00000000004f62a5
- 17: 0x000000000049ca7b
- 16: _PyFunction_Vectorcall
- 15: 0x000000000049ca7b
- 14: _PyFunction_Vectorcall
- 13: 0x000000000049ca7b
- 12: _PyFunction_Vectorcall
- 11: _PyEval_EvalCodeWithName
- 10: _PyEval_EvalFrameDefault
- 9: _PyObject_MakeTpCall
- 8: 0x00007f5be6d7d4e3
- 7: _ctypes_callproc
- 6: ffi_call
- 5: ffi_call_unix64
- 4: TVMModGetFunction
- 3: tvm::runtime::ModuleNode::GetFunction(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, bool) [clone .localalias.308]
- 2: tvm::runtime::RPCModuleNode::GetFunction(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, tvm::runtime::ObjectPtr<tvm::runtime::Object> const&)
- 1: tvm::runtime::RPCClientSession::GetFunction(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&)
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::RPCEndpoint::Init()::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/tmp/tmpyloz6yj2/src/runtime/rpc/rpc_endpoint.cc", line 681
- TVMError:
- ---------------------------------------------------------------
- An error occurred during the execution of TVM.
- For more information, please see: https://tvm.apache.org/docs/errors.html
- ---------------------------------------------------------------
- Check failed: (code == RPCCode::kReturn) is false: code=1
- Traceback (most recent call last):
- 50: 0xffffffffffffffff
- 49: _start
- 48: __libc_start_main
- 47: Py_BytesMain
- 46: Py_RunMain
- 45: 0x0000000000677370
- 44: PyVectorcall_Call
- 43: _PyFunction_Vectorcall
- 42: _PyEval_EvalCodeWithName
- 41: 0x000000000049ec68
- 40: _PyFunction_Vectorcall
- 39: _PyEval_EvalCodeWithName
- 38: 0x000000000049ec68
- 37: 0x00000000005aa1b8
- 36: 0x000000000061c755
- 35: PyEval_EvalCode
- 34: _PyEval_EvalCodeWithName
- 33: 0x000000000049ec68
- 32: _PyFunction_Vectorcall
- 31: _PyEval_EvalCodeWithName
- 30: _PyEval_EvalFrameDefault
- 29: PyVectorcall_Call
- 28: _PyFunction_Vectorcall
- 27: _PyEval_EvalCodeWithName
- 26: _PyEval_EvalFrameDefault
- 25: 0x000000000046eb21
- 24: 0x00000000004fea57
- 23: _PyFunction_Vectorcall
- 22: 0x000000000049ca7b
- 21: 0x00000000004f7ccc
- 20: 0x00000000005e8238
- 19: 0x00000000005e8136
- 18: 0x00000000004f62a5
- 17: 0x000000000049ca7b
- 16: _PyFunction_Vectorcall
- 15: 0x000000000049ca7b
- 14: _PyFunction_Vectorcall
- 13: 0x000000000049ca7b
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 142, in build
- res = future.result()
- File "/usr/lib/python3.8/concurrent/futures/_base.py", line 444, in result
- return self.__get_result()
- File "/usr/lib/python3.8/concurrent/futures/_base.py", line 389, in __get_result
- raise self._exception
- File "/usr/lib/python3.8/concurrent/futures/thread.py", line 57, in run
- result = self.fn(*self.args, **self.kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/contrib/popen_pool.py", line 404, in <lambda>
- worker = lambda *args: self._worker_run(*args)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/contrib/popen_pool.py", line 373, in _worker_run
- return proc.recv()
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/contrib/popen_pool.py", line 297, in recv
- raise TimeoutError()
- TimeoutError
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 588, in __call__
- func, arg_info = _build_func_common(measure_input, self.runtime, **kwargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 540, in _build_func_common
- func = build(s, args, target_host=task.target_host, runtime=runtime)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 227, in build
- input_mod = lower(inputs, args, name=name, binds=binds)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/driver/build_module.py", line 134, in lower
- return ffi.lower_schedule(inp, args, name, binds, simple_mode)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 237, in __call__
- raise get_last_ffi_error()
- tvm._ffi.base.TVMError: Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
- Traceback (most recent call last):
- 10: TVMFuncCall
- 9: _ZN3tvm7runtime13PackedFun
- 8: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)>::AssignTypedLambda<tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}>(tvm::{lambda(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, tvm::runtime::String const&, tvm::runtime::Map<tvm::te::Tensor, tvm::tir::Buffer, void, void> const&, bool)#5}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const, tvm::runtime::TVMRetValue) const
- 7: tvm::LowerSchedule(tvm::te::Schedule, tvm::runtime::Array<tvm::runtime::ObjectRef, void> const&, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::unordered_map<tvm::te::Tensor, tvm::tir::Buffer, std::hash<tvm::te::Tensor>, std::equal_to<tvm::te::Tensor>, std::allocator<std::pair<tvm::te::Tensor const, tvm::tir::Buffer> > > const&, tvm::GlobalVarSupply, bool)
- 6: tvm::LowerWithPassList(tvm::IRModule, tvm::runtime::Array<tvm::transform::Pass, void>)
- 5: tvm::transform::Pass::operator()(tvm::IRModule) const
- 4: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 3: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 2: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 1: tvm::tir::transform::PrimFuncPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
- 0: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<TVMFuncCreateFromCFunc::{lambda(tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)#2}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/_ffi/_ctypes/packed_func.py", line 81, in cfun
- rv = local_pyfunc(*pyargs)
- File "/root/.local/lib/python3.8/site-packages/tvm-0.10.0-py3.8-linux-x86_64.egg/tvm/autotvm/measure/measure_methods.py", line 871, in verify_pass
- raise InstantiationError("Skipped because of invalid gpu kernel")
- tvm.autotvm.task.space.InstantiationError: Skipped because of invalid gpu kernel
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement