Advertisement
frentzy

Pag 1.04

Apr 25th, 2018
165
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Latex 19.57 KB | None | 0 0
  1. \documentclass[10pt,a4paper]{article}
  2.  
  3. %\usepackage{titlesec}
  4. %\renewcommand{\thesubsubsection}{(\roman{subsubsection})}
  5. %\usepackage{textgreek}
  6. \usepackage[english,romanian]{babel}
  7. \usepackage{newunicodechar}
  8. %\usepackage[romanian]{babel}
  9. \usepackage{combelow}
  10. \usepackage{memhfixc}
  11. \usepackage{fancyhdr}  
  12. \usepackage[utf8]{inputenc}
  13. \usepackage{libertine}
  14. \usepackage{blindtext}
  15. \usepackage{geometry}
  16. \usepackage{lipsum}
  17. \usepackage{multicol}
  18. \usepackage [reqno]{amsmath}
  19. \usepackage {bm}
  20. \usepackage[utf8]{inputenc}
  21. \usepackage{graphicx}
  22.  
  23. \graphicspath{ {C:/Users/Frentescu Stefan/Desktop} }
  24. \makeatletter
  25. \newcommand{\leqnomode}{\tagsleft@true}
  26. \newcommand{\reqnomode}{\tagsleft@false}
  27. \newcommand\tab[1][5mm]{\hspace*{#1}}
  28. \makeatother
  29.  
  30. \geometry{
  31. a4paper,
  32. total={170mm,257mm},
  33. left=20mm,
  34. top=20mm,
  35. }
  36. \setlength{\columnsep}{1cm}
  37. \lhead{\headerL}
  38. \chead{\headerC}
  39. \rhead{\headerR}
  40. \def\headerL{}
  41. \def\headerC{}
  42. \def\headerR{}
  43. \newcommand{\thispageheader}[2][R]{\expandafter\def\csname header#1\endcsname{#2}}
  44. %\date{\today}
  45. %\pagestyle{myheadings}
  46.  
  47. \begin{document}
  48. \selectlanguage{english}   
  49. \title{ \textbf{ Un titlu remarcabil de unic}}
  50. \author{ Frentescu Stefan}
  51. \maketitle
  52.  
  53. \abstract
  54. \noindent \blindtext
  55. %}
  56. \section*{Section 1}
  57. \lipsum
  58. \section*{Section 2}
  59. \lipsum
  60. \section*{Section 3}
  61. \lipsum
  62. \newpage
  63. \begin{multicols}{2}
  64.    
  65. \hspace{-5.3mm}\textbf{DOUBLE EXPONENTIAL \\
  66. DISTRIBUTIONS}
  67.  
  68. \hspace{5mm}Let be $\mathrm{a_t}$ be a serios of independent identically \hspace{5mm} double-exponentially \hspace{5mm} (Laplace) distributed random variables, i.e. with probability density function(\textbf{PDF}) given by $$\displaystyle{ f(a) = \frac{\lambda}{2}e^{-\lambda |a|} , \lambda > 0 \hspace{5mm} \forall a}$$
  69. Let be the observed stationary time series $ \mathrm{\{X_t\}} $ be generated by the \textbf{ARMA} scheme
  70. $$\Phi ( B ) X_t = \Theta ( B ) a_t $$ where $$ \Theta ( B ) = (1 - \phi_{_1} B - ... - \phi_q B^q ) $$
  71. $$ \Phi ( B )  = ( 1 - \phi_{_1} B - \phi_{_2} B^2 - ... - \phi_p B^p ) $$ and B is the backward shift operator so that $$\mathrm{ B^k X_t = X_{t-k}.} $$
  72. \hspace{5mm} Since the series $\mathrm{\{X_t\}} $ is assumed to be stationary, all the roots of \hspace{2mm} lie outside the unit circle, and we can write the moving average
  73. $$ X_{_t} = \Phi^{-1} ( B )  \Theta ( B ) a_t = \Psi (B ) \sum\nolimits_{j = 0}^{m} \mathit{\Psi_j a_{t-j}} $$
  74. where the coefficients \boldsymbol{$ \Psi ( B )  = 1 + \psi_1 B + ...    $} can be found by equating coefficients in
  75. $$ \Phi( B )  \Psi ( B ) = \Theta ( B ). $$
  76. Let
  77. \begin{equation} Z_{_n} = \sum_{j = 0}^n \mathit{\Psi_{_j} a_{_{t-j}}} \end{equation}
  78. and assume $\scriptstyle{\Psi_y \neq \Psi_j} $ for i $\neq$ j.
  79. \hspace{5mm} The \textbf{PDF} of $ \mathrm{Z_n} $ is given by
  80. \large{$$ \displaystyle{ f_n (z) = \frac{\lambda}{2} \sum\nolimits_{j=0}^{n} \alpha_{_j}^{ ( n )} \left| \mathit{\Psi}_{_j} \right|^{-1}  \mathrm{exp} ( - \lambda \left| \frac{z}{\mathit{\Psi}_{_j}} \right|)}$$} \normalsize{\hspace{-1.5mm}where $\mathrm{\alpha_{j}^{(n)} }$ are functions of \hspace{1mm} $\mathrm{\scriptstyle{\{\Psi_i\}}}$
  81. the given by
  82. } $$ \alpha_{_j}^{(n)} = \prod_{i=0,i \neq j} (1 - \left|\mathit{\frac{\Psi_{_i}}{\Psi_{_j}}} \right| )^{-1}, \hspace{2mm} \mathit{j} = 1,2,...,n $$
  83. \hspace{5mm}Now
  84. \begin{equation} \displaystyle\ f(x) = \lim_{_{n \rightarrow \infty}} f_n(x)  $$
  85. and obtain the following expression for the marginal \textbf{PDF} of $\mathrm{X_t}$
  86. $$ f(x) = \frac{\lambda}{2} \sum\nolimits_{j=0}^{\infty} \alpha_{_j} \left| \mathit{\Psi_{_j}} \right|^{-1 } \mathrm{exp} (-\lambda \left| \mathit{\frac{x}{\Psi_{_j}}} \right| )   \
  87. \end{equation}
  88. and $$ \alpha_{_j} = \prod_{_{i=0,i \neq j}}^{\infty} {(1 - \left| \mathit{\frac{\Psi_{_i}}{\Psi_{_j}}} \right| ) }^{-1} $$
  89. \hspace{5mm} These results follows as special case of \textit{Box's} [3], where he derives the distribution of any linear combination of independent $ \chi^2 $ variables with even degree of freedom by nothing that each $\mathrm{a_i}$ may be written as a constant times as difference \hspace{3mm} between \hspace{3mm} two independent \hspace{3mm} $\chi^2$ variables. \textit{Preda} [8] generalized the above fact to mixed double-exponentially.
  90. \subsection*{\center{1. STATISTICAL MODEL}}
  91. \subsubsection*{\center{Autoregressive model}}
  92. \hspace{16.4mm}Let be the time series Z and Y be represented by autoregressive models of order p
  93. $$ Z_{_t} = \mu + \sum\nolimits_{i=1}^p \phi_{_i}(Z_{_{t-i}} -\mu) + a_{_t} $$
  94. and
  95. $$ Y_{_t} = \xi + \sum\nolimits_{i=1}^p \mathit{\Theta}_{_i}(Y_{_{t-i}} -\xi) + b_{_t} $$
  96. where $\phi_{_i}$ and $\mathit{\Theta_{_i}}$ (i=1,...p) are the autoregressive parameters and $\mu$ and $\xi$ are the mean of the series Z and Y, respectively. $\mathrm{\{a_{t}  \} and \{ b_t \}}$ are white-noise \hspace{3mm} processes \hspace{2mm} with $\mathrm{E(a_t)=E(b_t)=0,}$ \hspace{2mm} and Cov($\mathrm{a_t , b_{t+r}=0,}r \neq 0$) \hspace{2mm} and Var($\mathrm{a_t}$)$=\mathrm{\hspace{2mm} \sigma^2_{z}}$ \hspace{2mm} and Var($\mathrm{b_t}) = \mathrm{\sigma^2_{y}}.$
  97. \hspace{5mm}Since the assumption of independence is very limited in practive, we assume that the joint distribution of $\mathrm{a_t}$ and $\mathrm{b_t}$ is bivariate , so that Cov($\mathrm{a_t,b_{t+r}}$) $=\mathrm{\rho \sigma_z \sigma_y \forall r.}$
  98. \hspace{5mm} Let denote by $\mathrm{Z_n(L) = E(Z_{n+L} |z^{(n)})}$ the expecte value of Z at time n+L and $\mathrm{z^{(n)} = z_1,...,z_n}$ the set of observations form Z. Similarly denote by $\mathrm{Y_m(K) = E(Z_{m+K}|y^{(m)})}$ the expected value of Y at time m+K and the set of observations form Y.
  99. \hspace{10mm} We get
  100. $$ Z_{_{n+L}}(L) = \mu + \sum\nolimits_{i=1}^p \phi_{_i}(Z_{_n}(L-i)-\mu) $$
  101. \hspace{5mm} The difference $\mathrm{Z_{n+L}-Z_n(L)}$ between actual and expected value Z at time n+L will be denoted by $\mathrm{e_n(L)}$.We can show that
  102. $$e_n(L) = \sum\nolimits_{i=0}^{L-1} R_{_i}a_{n+L-i}$$
  103. where
  104. $$ \mathrm{R_{_0} = 1, R_{_1} = \phi_{_1} , ... , R_{_j} }= \sum\nolimits_{i=1}^p \phi_{_i} R_{_{j-i}} $$
  105. %// footer pt urmatoarea pagina sa nu uiti
  106. \pagenumbering{gobble}
  107.    
  108.     \pagebreak
  109.  
  110. %   asd asda sda sdasdsaasd df szdf  sdasdaD Ad asd asd dddddddddddddddd
  111. %\newpage
  112. %\pagestyle{fancy}
  113. %{\thispageheader[C]{My Text}
  114. \pagestyle{fancy}
  115. \renewcommand{\headrulewidth}{0pt} % no line in header area
  116. \fancyhead{}
  117. \chead{LATEST TRENDS on COMPUTERS (Volume I)}
  118. \cfoot{170}
  119. \rfoot{ISBN: 978-960-474-201-1}
  120. \lfoot{ISNN: 1792-4251}
  121. \hspace{-5mm}tion, signature recognition, keystroke, teeth image recognition , ADN, etc.
  122.  
  123. The protocol can be used not only for two persons who wants to communicate but also for a group communication. The second situation is much more complex due to the number of the authentications that must be made. We suppose that all the users that have been authenticated (even if they are two or more) have acces to the messages transmitted on the network. An authenticated user can send messages, read messages even if they are not addresed to him, and modify messages that he did not send. All the users that have been authenticated have the same common key so they all can see if one message have been modified and what are the modifications.
  124.  
  125. \subsection*{3.1 Fuzzy Model Construction}
  126.  
  127. Fuzzy sets were introduced by Zadeh (1965) in order to represent and manipulate date that was not precise, but rather fuzzy. Similarly with the crisp case, a fuzzy subset. A of a set X is defined as a collection of ordered pairs with the first element from X and the second element from the interval [0,1] ; the set X is referred to as the universe of discourse for the fuzzy subset A.
  128. \newline \newline \textbf{Definition 1.} \textit{If X is a nonempty set then a fuzzy set A in X is defined by its membership function} $\mu_A : X \rightarrow [0,1]$ ,\textit{ where} $\mu_A(x)$ \textit{represents the membership degree of the element} $x$ \textit{in the fuzzy set A ; then A is represented as A} $=$ \{ $(x,\mu_A(x)) / x\in X$ \}.
  129. \newline
  130.  
  131. Because the majority of practical applications work with trapezoidal or triangular distributions and these representations are still a subject of various recent papers ( [20], [21] for instance) we will work with membership functions represented by trapezoidal fuzzy numbers. Such a number $N = (\underline{m},\overline{m},\alpha,\beta)$ is defined as
  132.  
  133. \[\mu_N(x) = \left\{
  134.  \begin{array}{lr}
  135.     %x^2 & : x < 0\\
  136.     %x^3 & : x \ge 0
  137.         0 \hspace{2mm} for \hspace{2mm} x < \underline{m} - \alpha \\
  138.         \frac{x-\underline{m} + \alpha}{\alpha} for x \in [\underline{m} - \alpha , \underline{m}] \\
  139.         1 \hspace{2mm} for\hspace{2mm} x \in [\underline{m} , \overline{m}] \\
  140.         \frac{\overline{m} + \beta - x}{\beta} \hspace{2mm} for \hspace{2mm} x \in [\overline{m},\overline m + \beta]\\
  141.         0 \hspace{2mm} for \hspace{2mm} x > \overline m + \beta
  142.  \end{array}
  143. \right.
  144. \]
  145. We are interested to compute the gravity center of a trapezoidal fuzzy numer. \hspace{2mm} For a nonself-intersecting polygon defined by n vertices $(x_0,y0) , (x_1,y_1), ... , (x_{n-1},y_{n-1}) $ the gravity center $ G = ( G^x, G^y)$ is given by [22]
  146. $$G^x = \frac{1}{6A} \sum_{i=0}^{n-1} (x_i + x_{i+1})(x_i y_{i + 1 } - x_{i+1} y_i) $$
  147. $$G^y = \frac{1}{6A} \sum_{i=0}^{n-1} (y_i + y_{i+1})(x_i y_{i + 1 } - x_{i+1} y_i) $$
  148. where A is the polygon's area
  149. $$ A = \frac{1}{2} \sum_{i=0}^{n-1} (x_i y_{i+1} - x_{i+1} y_i). $$
  150. For the trapezium $(\underline m , \overline m , \alpha , \beta)$ the previous formulas give
  151. $$ G^x = \frac{(\overline m + \beta)^2 - (\underline m - \alpha)^2 + 2(\overline m ^2 - \underline m ^2)}{6(\overline m - \underline m ) + 3(\alpha + \beta)}+  $$
  152. $$ + \frac{\underline m \alpha + \overline m \beta}{6(\overline m - \underline m ) + 3(\alpha + B)} $$
  153. $$ G^y = \frac{3(\overline m - \underline m )+ \alpha + \beta}{6(\overline m - \underline m )+ 3(\alpha + \beta)} $$
  154. Given a lot of fuzzy sets \{$F_1,F_2,...,F_n\}$ with trapezoidal membership functions, we define the composition of two fuzzy sets $F_i$ and $F_j$ as
  155. \begin{itemize}
  156. \item compute the gravity centers $G_i$\hspace{1mm}$=(G_{i}^x, G_{i}^y)$ and \hspace{-2mm}$G_j \hspace{2mm}\mathrm{=} \hspace{2mm} ((G_{j}^x, G_{j}^y))$ respectively, corresponding \hspace{-0.1mm}of trapezoidal numbers $(\underline m _i,\overline m _i, \alpha_i, \beta_i)$ and $(\underline m_j,\overline m _j, \alpha_j,\beta_j)$ respectively
  157. \item compute $x_{ij} = \frac{G_{i}^x + G_{j}^x}{2}$
  158. \item $ k \in {1,2,...,n}$ is given by $$  \mu_F_k ( x_{ij}) = max_{l=1,n} \mu_F_l (x_{ij}) $$
  159. \item define $ F_i \otimes F_j = F_k.$
  160. \end{itemize}
  161. Let A and B be fuzzy sets in the universe $ U\subseteq R,$ represented by trapezoidal numbers $(\underline m _A , \overline m_A, \alpha _A, \beta_A ) $ and $(\underline m_B, \overline m_B , \alpha _B , \beta_B)$ respectively, with the gravity centers $G_A$ and $G_B$ respectively. We define the distance between A and B as follows:
  162. \setcounter{equation}{0}
  163. \begin{equation}
  164. d(A,B) = \frac{d_E(G_A,G_B)}{|U|}
  165. \end{equation}
  166. where $d_E$ is the Euclidean distance and $|U|$ is the length of $U$; it is obviously that $d(A,B) \in [0,1]$.
  167. \pagebreak
  168. %\newpage}
  169. %\def\calification{
  170. %  \newpage
  171. %  \null\vfil
  172. %  \clearpage
  173. %  \pagestyle{calification}
  174. %}
  175.  
  176. %\def\endcalification{\par\vfil\newpage}
  177. %\fancyhf{}
  178. %\thispagestyle{myheadings}
  179. %\center{\markright{John Smith}}
  180. %\fancyhead[c]{output you want}
  181.  
  182.  
  183. %
  184. %\pagestyle{fancy}
  185. %\fancyhead[LE,RO]{Share\LaTeX}
  186. %\fancyhead[RE,LO]{Guides and tutorials}
  187. %\fancyfoot[CE,CO]{\leftmark}
  188. %\fancyfoot[LE,RO]{\thepage}
  189. %\rhead{ceva asd asd asd asd asd asd asssssssssssssss}
  190.  
  191. \newpage
  192. \setcounter{page}{23}
  193. \end{multicols}
  194. %\pagestyle{fancy}
  195. %\fancyhf{}
  196. %\fancyhead[R]{\thepage}
  197.  
  198. %\pagenumbering{arabic}
  199.  
  200. \begin{flushleft}
  201. \footnotesize{2} \vspace{-5mm}\center{ \footnotesize{N.S PAPAGEORGIOU, V. RĂDULESCU, AND D.REPOVS}}
  202. \end{flushleft}
  203.  
  204. Let $u \in {K_\hat\sigma}_{_\lambda}$. Then
  205.  
  206. \leqnomode
  207. \begin{align}
  208. \left\langle   A_p (u),h \right\rangle  + \left\langle A(u),h \right\rangle = \int_\Omega \lambda \hat g (z,u) hdz \mathrm{\,\, for\,\, all } \,\, h \in W_{0}^{1,p} (\Omega).%\tag{e}
  209. \end{align}
  210.  
  211. In (2) we choose $h = (u - u_{\lambda}^*)^+ \in W_{0}^{1,p} (\Omega). $ Then
  212. $$ \left\langle A_p(u),(u-u_\lambda^*)^+ \right\rangle + \left\langle A(u), (u-u_\lambda^*)^+ \right\rangle$$
  213. \leqnomode
  214. \begin {align*}
  215. \longrightarrow\tab =\tab& \lambda \int_\lambda f(z,u_\lambda^*)(u-u_\lambda^*)^+ dz \mathrm{(see (1))} \tag{2'}& \\
  216. \longleftrightarrow \tab=\tab &  \left\langle A_p(u_\lambda^*),(u-u_\lambda^*)^+ \right\rangle + \left\langle A(u), (u-u_\lambda^*)^+\right\rangle \mathrm{(since}\,\, u_\lambda^* \in S_+ \mathrm{)},& \\
  217. \Rightarrow \hspace{4.5mm} & \left\langle  A_p(u) - A_p(u_\lambda^*),(u-u_\lambda^*)^+ \right\rangle + \left\langle A(u) - A(u_\lambda^*),(u-u_\lambda^*)^+ \right\rangle = 0, & \\
  218. \Rightarrow \hspace{4.5mm} & ||D(u-u_\lambda^*)^+ ||_{2}^2 = 0, & \\
  219. \Rightarrow \hspace{4.5mm}& u \leq u_\lambda^* &
  220. \end{align*}
  221. Similarly, if in (2) we choose $h = (v_\lambda^* -u)^+ \in W_0^{1,p} (\Omega),$ then we obtain
  222. %\leqnomode
  223. \begin{align}\label{$\A_\alpha$}
  224. \tag{$A_\alpha$}
  225. v_\lambda^* \leq u %\tag{A_\alpha}
  226. \end{align}
  227. So, we have proved that ~\eqref{$A_\alpha$}
  228. $$ u \in [v_\lambda^*, u_\lambda^*] $$
  229. Moreover, as before the nonlinear regularity theory ((see the proof of Proposition ??), implies that $u \in C_0^1(\overline \Omega)$
  230. . Therefore we conclude that
  231. $$ K_{\overline{\sigma}}_\lambda  \subseteq [v_\lambda^*,u_\lambda^*] \cap C_0^1 (\overline\Omega) $$
  232. In a similar fashion we show that
  233. \begin{align} \label{$P_\lambda$}
  234. \tag{$P_\lambda$}
  235. K{_\hat{\sigma}_\lambda^+} \subseteq [0,u_\lambda^*] \cap C_+ \,\,\mathrm{and}\,\, K{_\hat{\sigma}_\lambda^-} \subseteq [v_\lambda^*,0] \cap (-C_+)
  236. \end{align}
  237. The extremality of $u_\lambda^*$ and $v_\lambda^*$ ,implies that: ~\eqref{$A_\alpha$} and ~\eqref{$P_\lambda$}
  238. $$ K{_\hat{\sigma}_\lambda^+} = \{0,u_\lambda^*\} \,\,\mathrm{and}\,\, K{_\hat{\sigma}_\lambda^-} = \{ v_\lambda^*,0\}. $$
  239. This proves Claim 1.
  240. On account of Claim 1, we see that we may assume that
  241. \begin{align}
  242. K{_\hat{\sigma}_\lambda}\mathrm{ \,is \,\,infinite}
  243. \end{align}
  244. Otherwise evidently we already have an infinity of smooth nodal solutions and so we are done.\\ \newline
  245. \large{\textbf{Claim 2.}} \normalsize{$u_\lambda^* \in D_+ \,\,and\,\, v_\lambda^* \in \,\,-D_+ \,\,are \,\,local \,\,minimizers \,\,of \,\,the \,\,functional\,\, \hat{\sigma}_\lambda$}.
  246. From(1) it is clear that $\hat{\sigma}_\lambda^+ $ is coercive. Also, $\hat{\sigma}_\lambda^+$  is sequentially weakly lower semicontinuous. So, we can find $\hat{u}_\lambda^* \in W_0^{1,p}(\Omega) $ such that
  247. \begin{align}
  248. \label{asta}
  249. \hat{\sigma}_\lambda^+(\hat{u}_\lambda^*) = inf \left[\hat{\sigma}_\lambda^+(u) : u \in W_0^{1,p} (\Omega) \right].
  250. \end{align}
  251. Let $\hat{u_1}(p)$ be the positive principal eigenfunction of$(- \Delta_p , \W_0^{1,p}(\Omega))$.\tab We know that $\hat{u}_1(p) \in D_+$ (see Motreanu-Motreanu-Papageorgiou [16]). Recall that $u_\lambda^* \in D_+.$ So, invoking Lemma 3.6 of Filippakis-Papageorgiou [9], we can find $\tau$ $>$ 0 such that
  252. \begin{align}
  253. \tau \hat{u}_1(p) = \left[\frac{1}{2}u_\lambda^* , u_\lambda^* \right]
  254. \end{align}
  255. Evidently $\displaystyle{\frac{1}{2} \leq \tau \leq 2.}$ Hypothesis $H_1(ii)$ implies that there exists $\epsilon >0$ such that
  256. \begin{align}
  257. F(z,x) \geq \xi |x|^\beta \mathrm{\,\,for\,\, almost\,\, all\,\,} z \in \Omega , \mathrm{\,\,all\,\,} 0 \leq x \leq \eta
  258. \end{align}
  259. \pagebreak
  260. \newpage
  261. \begin{center}
  262. NODAL SOLUTIONS FOR THE ROBIN P-LACIAN PLUS AND INDEFINITE POTENTIAL AND A GENERAL REACTION
  263. \end{center}
  264. \newline
  265. (here $\eta \in (0,\delta_1)$ is as in (\ref{fail})). We have
  266. $$ \hat\sigma_\lambda^+(\tau\hat u_1(p)) \leq \frac{\tau^p}{p}\hat\lambda_1(p) + \frac{\tau^2}{2}||D\hat u_1(p)||_2^2 - \lambda\xi\tau^\beta ||\hat u_1(p)||_\beta^\beta$$
  267. with $\hat\lambda_1(p) > 0$ being the principal eigenvalue of $(-\Delta_p,W_0^{1,p}(\Omega))$.
  268. It follow that
  269. $$ \hat\sigma _\lambda^+(\tau\hat u_1(p)) < 0 $$
  270. \begin{center}
  271. if and only if
  272. \end{center}
  273. \begin{align}
  274. \tag{$7_\mathrm{f}$}
  275. \end{align}
  276. \vspace{-10mm}
  277. \begin{align*}
  278. \frac{\frac{\tau^{p-2}}{p}\hat\lambda_1(p) + \frac{1}{2} ||D\hat u_1(p)||_2^2}{\xi \tau^{\beta-2}||\hat u_1(p)||_\beta^\beta} < \lambda
  279. \end{align*}
  280. Note that
  281. $$ \frac{\frac{\tau^{p-2}}{p}\hat\lambda_1(p) + \frac{1}{2} ||D\hat u_1(p)||_2^2}{\xi \tau^{\beta-2}||\hat u_1(p)||_\beta^\beta} \leq \frac{\frac{2^{\beta+p-4}}{p}\hat\lambda_1(p)+2^{\beta - 3 }||D\hat u_1(p)||^2_2}{\xi||\hat u_1(p)||_\beta^\beta} $$
  282. (recall that $\displaystyle{\frac{1}{2} \leq \tau \leq 2}$)
  283. So, if we let $\lambda^0 = \frac{\frac{2^{\beta+p-4}}{p}\hat\lambda_1(p)+2^{\beta - 3 }||D\hat u_1(p)||^2_2}{\xi||\hat u_1(p)||_\beta^\beta}$ and define
  284. $$ \lambda_*^0 = \mathrm{max}\{\lambda^0,\lambda_*\}, $$
  285. then from (7) we infer that
  286. \begin{align*}
  287. \tab &\hat\sigma_\lambda^+(\tau \hat u_1(p)) < 0 \mathrm{\,\,for\,\,all\,\,}\lambda > \lambda_*^0, & \\
  288. \Rightarrow \hspace{4.5mm}& \hat\sigma_\lambda^+(\hat u_\lambda^*) <0 = \hat\sigma_\lambda^+ (0) \mathrm{\,\,for\,\,all\,\,}\lambda > \lambda_*^0 (see~\eqref{asta}) & \\
  289. \Rightarrow \hspace{4.5mm} & \hat u_\lambda^* \neq 0 \mathrm{\,\,and\,\,} \hat u_\lambda^* \in K_{\hat\sigma_\lambda^*} \mathrm{\,\,for\,\,all\,\,} \lambda > \lambda_*^0 (see~\eqref{asta}) & \\
  290. \hspace{19.5mm}\Rightarrow\hspace{4.5mm} & \hat u_\lambda^* = u_\lambda^* \mathrm{\,\,for\,\,all\,\,} \lambda > \lambda_*^0 (\mathrm{\,\,see\,\, Claim\,\, 1}).
  291. %From (3) and Claim 2, we see that we can find $\p\in (0,1)$ small such that
  292. \end{align*}
  293.  
  294. From (1) it is clear that $\hat\sigma_\lambda^+|_C_+.$Since $u_\lambda^* \in D_+$, from (4) it follows that
  295. \begin {align*}
  296. & u_\lambda^*\mathrm{\,\,is\,\,a\,\,local\,\,} C^1(\overline\Omega) - \mathrm{\,\,minimizer\,\,of\,\,} \hat\sigma_\lambda, & \\
  297. \hspace{-150.5mm}\Rightarrow \hspace{4.5mm} & u_\lambda^* \mathrm{\,\,is\,\, a\,\, local\,\,} W_0^{1,p}(\Omega) - \mathrm{\,\,minimizer\,\,of\,\,} \hat\sigma_\lambda (\mathrm{see\,\,Proposition\,\,\ref{fail}}).
  298. \end{align*}
  299.  
  300. Similarly for $v_\lambda^* \in -D_+$ using this time the functional $\hat\sigma_\lambda^-$
  301.  
  302. This proves Claim 2.
  303.  
  304. Without any loss of generality, we may assume that
  305. \begin{align}
  306. \tag{7'}
  307. \hat\sigma_\lambda(v_\lambda^*) \leq \hat\sigma(u_\lambda^*).
  308. \end{align}
  309. \setcounter{equation}{7}
  310.  
  311. From (3) and Claim 2, we see that we can find $p\in (0,1)$ small such that
  312. \begin{align}\label{asta2}
  313. \hat\sigma_\lambda(v_\lambda^*)\leq\hat\sigma_\lambda(u_\lambda^*) < \mathrm{\,\,inf\,\,} [\hat\sigma_\lambda(u): ||u-u_\lambda^*|| = \rho] = \hat m_\lambda, ||v_\lambda^*-u_\lambda^*||<\rho
  314. \end{align}
  315. (see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 29). The functional $\hat\sigma_\lambda$ is coercive (see(1)). Hence
  316. \begin{align}
  317. \label{asta3}
  318. \hat\sigma_\lambda \mathrm{\,\,satisfies \,\,the \,\,PS-condition}
  319. \end{align}
  320.  
  321. Then ~\eqref{asta2},~\eqref{asta3} permit the use of Theorem \ref{fail} (the mountain pass theorem). So, we can find $y_\lambda\in W_0^{1,p}(\Omega)$ such that
  322. \begin{align}
  323. y_\lambda\in K{_\hat\sigma_\lambda} \mathrm{\,\,and\,\,}\hat m_\lambda \leq \hat\sigma_\lambda(y_\lambda)
  324. \end{align}
  325. \newpage
  326. \pagestyle{fancy}
  327. \renewcommand{\headrulewidth}{0pt} % no line in header area
  328.  
  329. \fancyhead{}
  330. \rhead{IADIS International Conference WWW/Internet 2006}
  331. \cfoot{}
  332. \lfoot{}
  333. \rfoot{287}
  334. \setcounter{figure}{1}
  335. \begin{figure}[th]
  336.     \centering
  337.         \includegraphics[width=0.73\textwidth]{../../clustersgraph.jpg}
  338.     \caption{Cluster's graph}
  339.     \label{fig:clusters graph}
  340. \end{figure}
  341. \begin{verbatim}
  342. if(a == )
  343. b == c ^ d = 3
  344. printf("ahahhaa);
  345. \end{verbatim}
  346.  
  347.  
  348.  
  349. \end{document}
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement