Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- #VI LAB4/2 made by Fensa08
- Патека во граф Problem 2 (0 / 0)
- На сликата е даден ненасочен граф со неговите јазли и нивните меѓусебни растојанија.
- enter image description here
- За јазлите во графот не се познати локациите. Во рамки на вашиот код, јазлите дефинирајте ги точно со имињата дадени на сликата.
- Треба да го решите проблемот на наоѓање на должината на најкратката патека помеѓу два јазли од графот. Притоа важи следното: Во графот постои специјален јазел кој ако се измине (е дел од патеката) ја намалува вкупната должина на патеката за 9.
- За секој тест пример се менуваат јазлите помеѓу кои треба да се најде најкратката патека и специјалниот јазел. Во рамки на почетниот код даден за задачата се вчитуваат влезните аргументи за секој тест пример. Во променливите Pocetok и Kraj ги имате почетниот и крајниот јазел за најкратката патека која треба да ја најдете, а во Stanica го имате специјалниот јазел.
- Вашиот код треба да има само еден повик на функција за приказ на стандарден излез (print) со кој ќе ја вратите должината на најкратката патека помеѓу почетниот и крајниот јазел.
- ##########################################################################################################################################
- from sys import maxsize as infinity
- """
- Информирано пребарување во рамки на граф
- """
- def memoize(fn, slot=None):
- """ Запамети ја пресметаната вредност за која била листа од
- аргументи. Ако е специфициран slot, зачувај го резултатот во
- тој slot на првиот аргумент. Ако slot е None, зачувај ги
- резултатите во речник.
- :param fn: зададена функција
- :param slot: име на атрибут во кој се чуваат резултатите од функцијата
- :return: функција со модификација за зачувување на резултатите
- """
- if slot:
- def memoized_fn(obj, *args):
- if hasattr(obj, slot):
- return getattr(obj, slot)
- else:
- val = fn(obj, *args)
- setattr(obj, slot, val)
- return val
- else:
- def memoized_fn(*args):
- if args not in memoized_fn.cache:
- memoized_fn.cache[args] = fn(*args)
- return memoized_fn.cache[args]
- memoized_fn.cache = {}
- return memoized_fn
- def best_first_graph_search(problem, f):
- """Пребарувај низ следбениците на даден проблем за да најдеш цел. Користи
- функција за евалуација за да се одлучи кој е сосед најмногу ветува и
- потоа да се истражи. Ако до дадена состојба стигнат два пата, употреби
- го најдобриот пат.
- :param problem: даден проблем
- :param f: дадена функција за евристика
- :return: Node or None
- """
- f = memoize(f, 'f')
- node = Node(problem.initial)
- if problem.goal_test(node.state):
- return node
- frontier = PriorityQueue(min, f)
- frontier.append(node)
- explored = set()
- while frontier:
- node = frontier.pop()
- if problem.goal_test(node.state):
- return node
- explored.add(node.state)
- for child in node.expand(problem):
- if child.state not in explored and child not in frontier:
- frontier.append(child)
- elif child in frontier:
- incumbent = frontier[child]
- if f(child) < f(incumbent):
- del frontier[incumbent]
- frontier.append(child)
- return None
- def greedy_best_first_graph_search(problem, h=None):
- """ Greedy best-first пребарување се остварува ако се специфицира дека f(n) = h(n).
- :param problem: даден проблем
- :param h: дадена функција за евристика
- :return: Node or None
- """
- h = memoize(h or problem.h, 'h')
- return best_first_graph_search(problem, h)
- def astar_search(problem, h=None):
- """ A* пребарување е best-first graph пребарување каде f(n) = g(n) + h(n).
- :param problem: даден проблем
- :param h: дадена функција за евристика
- :return: Node or None
- """
- h = memoize(h or problem.h, 'h')
- return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
- def recursive_best_first_search(problem, h=None):
- """Recursive best first search - ја ограничува рекурзијата
- преку следење на f-вредноста на најдобриот алтернативен пат
- од било кој јазел предок (еден чекор гледање нанапред).
- :param problem: даден проблем
- :param h: дадена функција за евристика
- :return: Node or None
- """
- h = memoize(h or problem.h, 'h')
- def RBFS(problem, node, flimit):
- if problem.goal_test(node.state):
- return node, 0 # (втората вредност е неважна)
- successors = node.expand(problem)
- if len(successors) == 0:
- return None, infinity
- for s in successors:
- s.f = max(s.path_cost + h(s), node.f)
- while True:
- # Подреди ги според најниската f вредност
- successors.sort(key=lambda x: x.f)
- best = successors[0]
- if best.f > flimit:
- return None, best.f
- if len(successors) > 1:
- alternative = successors[1].f
- else:
- alternative = infinity
- result, best.f = RBFS(problem, best, min(flimit, alternative))
- if result is not None:
- return result, best.f
- node = Node(problem.initial)
- node.f = h(node)
- result, bestf = RBFS(problem, node, infinity)
- return result
- import math
- import random
- from utils import Problem
- def distance(a, b):
- """The distance between two (x, y) points."""
- return math.hypot((a[0] - b[0]), (a[1] - b[1]))
- class Graph:
- """A graph connects nodes (verticies) by edges (links). Each edge can also
- have a length associated with it. The constructor call is something like:
- g = Graph({'A': {'B': 1, 'C': 2})
- this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
- A to B, and an edge of length 2 from A to C. You can also do:
- g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
- This makes an undirected graph, so inverse links are also added. The graph
- stays undirected; if you add more links with g.connect('B', 'C', 3), then
- inverse link is also added. You can use g.nodes() to get a list of nodes,
- g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
- length of the link from A to B. 'Lengths' can actually be any object at
- all, and nodes can be any hashable object."""
- def __init__(self, dictionary=None, directed=True):
- self.dict = dictionary or {}
- self.directed = directed
- if not directed:
- self.make_undirected()
- def make_undirected(self):
- """Make a digraph into an undirected graph by adding symmetric edges."""
- for a in list(self.dict.keys()):
- for (b, dist) in self.dict[a].items():
- self.connect1(b, a, dist)
- def connect(self, node_a, node_b, distance_val=1):
- """Add a link from node_a and node_b of given distance_val, and also add the inverse
- link if the graph is undirected."""
- self.connect1(node_a, node_b, distance_val)
- if not self.directed:
- self.connect1(node_b, node_a, distance_val)
- def connect1(self, node_a, node_b, distance_val):
- """Add a link from node_a to node_b of given distance_val, in one direction only."""
- self.dict.setdefault(node_a, {})[node_b] = distance_val
- def get(self, a, b=None):
- """Return a link distance or a dict of {node: distance} entries.
- .get(a,b) returns the distance or None;
- .get(a) returns a dict of {node: distance} entries, possibly {}."""
- links = self.dict.setdefault(a, {})
- if b is None:
- return links
- else:
- return links.get(b)
- def nodes(self):
- """Return a list of nodes in the graph."""
- return list(self.dict.keys())
- def UndirectedGraph(dictionary=None):
- """Build a Graph where every edge (including future ones) goes both ways."""
- return Graph(dictionary=dictionary, directed=False)
- def RandomGraph(nodes=list(range(10)), min_links=2, width=400, height=300,
- curvature=lambda: random.uniform(1.1, 1.5)):
- """Construct a random graph, with the specified nodes, and random links.
- The nodes are laid out randomly on a (width x height) rectangle.
- Then each node is connected to the min_links nearest neighbors.
- Because inverse links are added, some nodes will have more connections.
- The distance between nodes is the hypotenuse times curvature(),
- where curvature() defaults to a random number between 1.1 and 1.5."""
- g = UndirectedGraph()
- g.locations = {}
- # Build the cities
- for node in nodes:
- g.locations[node] = (random.randrange(width), random.randrange(height))
- # Build roads from each city to at least min_links nearest neighbors.
- for i in range(min_links):
- for node in nodes:
- if len(g.get(node)) < min_links:
- here = g.locations[node]
- def distance_to_node(n):
- if n is node or g.get(node, n):
- return math.inf
- return distance(g.locations[n], here)
- neighbor = nodes.index(min(nodes, key=distance_to_node))
- d = distance(g.locations[neighbor], here) * curvature()
- g.connect(node, neighbor, int(d))
- return g
- class GraphProblem(Problem):
- """The problem of searching a graph from one node to another."""
- def __init__(self, initial, goal, graph):
- super().__init__(initial, goal)
- self.graph = graph
- def actions(self, state):
- """The actions at a graph node are just its neighbors."""
- return list(self.graph.get(state).keys())
- def result(self, state, action):
- """The result of going to a neighbor is just that neighbor."""
- return action
- def path_cost(self, c, state1, action, state2):
- return c + (self.graph.get(state1, state2) or math.inf)
- def h(self, node):
- """h function is straight-line distance from a node's state to goal."""
- locs = getattr(self.graph, 'locations', None)
- if locs:
- return int(distance(locs[node.state], locs[self.goal]))
- else:
- return math.inf
- import math
- import random
- import bisect
- """
- Дефинирање на класа за структурата на проблемот кој ќе го решаваме со пребарување.
- Класата Problem е апстрактна класа од која правиме наследување за дефинирање на основните
- карактеристики на секој проблем што сакаме да го решиме
- """
- class Problem:
- def __init__(self, initial, goal=None):
- self.initial = initial
- self.goal = goal
- def successor(self, state):
- """За дадена состојба, врати речник од парови {акција : состојба}
- достапни од оваа состојба. Ако има многу следбеници, употребете
- итератор кој би ги генерирал следбениците еден по еден, наместо да
- ги генерирате сите одеднаш.
- :param state: дадена состојба
- :return: речник од парови {акција : состојба} достапни од оваа
- состојба
- :rtype: dict
- """
- raise NotImplementedError
- def actions(self, state):
- """За дадена состојба state, врати листа од сите акции што може да
- се применат над таа состојба
- :param state: дадена состојба
- :return: листа на акции
- :rtype: list
- """
- return self.successor(state).keys()
- def result(self, state, action):
- """За дадена состојба state и акција action, врати ја состојбата
- што се добива со примена на акцијата над состојбата
- :param state: дадена состојба
- :param action: дадена акција
- :return: резултантна состојба
- """
- possible = self.successor(state)
- return possible[action]
- def goal_test(self, state):
- """Врати True ако state е целна состојба. Даденава имплементација
- на методот директно ја споредува state со self.goal, како што е
- специфицирана во конструкторот. Имплементирајте го овој метод ако
- проверката со една целна состојба self.goal не е доволна.
- :param state: дадена состојба
- :return: дали дадената состојба е целна состојба
- :rtype: bool
- """
- return state == self.goal
- def path_cost(self, c, state1, action, state2):
- """Врати ја цената на решавачкиот пат кој пристигнува во состојбата
- state2 од состојбата state1 преку акцијата action, претпоставувајќи
- дека цената на патот до состојбата state1 е c. Ако проблемот е таков
- што патот не е важен, оваа функција ќе ја разгледува само состојбата
- state2. Ако патот е важен, ќе ја разгледува цената c и можеби и
- state1 и action. Даденава имплементација му доделува цена 1 на секој
- чекор од патот.
- :param c: цена на патот до состојбата state1
- :param state1: дадена моментална состојба
- :param action: акција која треба да се изврши
- :param state2: состојба во која треба да се стигне
- :return: цена на патот по извршување на акцијата
- :rtype: float
- """
- return c + 1
- def value(self):
- """За проблеми на оптимизација, секоја состојба си има вредност.
- Hill-climbing и сличните алгоритми се обидуваат да ја максимизираат
- оваа вредност.
- :return: вредност на состојба
- :rtype: float
- """
- raise NotImplementedError
- """
- Дефинирање на класата за структурата на јазел од пребарување.
- Класата Node не се наследува
- """
- class Node:
- def __init__(self, state, parent=None, action=None, path_cost=0):
- """Креирај јазол од пребарувачкото дрво, добиен од parent со примена
- на акцијата action
- :param state: моментална состојба (current state)
- :param parent: родителска состојба (parent state)
- :param action: акција (action)
- :param path_cost: цена на патот (path cost)
- """
- self.state = state
- self.parent = parent
- self.action = action
- self.path_cost = path_cost
- self.depth = 0 # search depth
- if parent:
- self.depth = parent.depth + 1
- def __repr__(self):
- return "<Node %s>" % (self.state,)
- def __lt__(self, node):
- return self.state < node.state
- def expand(self, problem):
- """Излистај ги јазлите достапни во еден чекор од овој јазол.
- :param problem: даден проблем
- :return: листа на достапни јазли во еден чекор
- :rtype: list(Node)
- """
- return [self.child_node(problem, action)
- for action in problem.actions(self.state)]
- def child_node(self, problem, action):
- """Дете јазел
- :param problem: даден проблем
- :param action: дадена акција
- :return: достапен јазел според дадената акција
- :rtype: Node
- """
- next_state = problem.result(self.state, action)
- return Node(next_state, self, action,
- problem.path_cost(self.path_cost, self.state,
- action, next_state))
- def solution(self):
- """Врати ја секвенцата од акции за да се стигне од коренот до овој јазол.
- :return: секвенцата од акции
- :rtype: list
- """
- return [node.action for node in self.path()[1:]]
- def solve(self):
- """Врати ја секвенцата од состојби за да се стигне од коренот до овој јазол.
- :return: листа од состојби
- :rtype: list
- """
- return [node.state for node in self.path()[0:]]
- def path(self):
- """Врати ја листата од јазли што го формираат патот од коренот до овој јазол.
- :return: листа од јазли од патот
- :rtype: list(Node)
- """
- x, result = self, []
- while x:
- result.append(x)
- x = x.parent
- result.reverse()
- return result
- """Сакаме редицата од јазли кај breadth_first_search или
- astar_search да не содржи состојби - дупликати, па јазлите што
- содржат иста состојба ги третираме како исти. [Проблем: ова може
- да не биде пожелно во други ситуации.]"""
- def __eq__(self, other):
- return isinstance(other, Node) and self.state == other.state
- def __hash__(self):
- return hash(self.state)
- """
- Дефинирање на помошни структури за чување на листата на генерирани, но непроверени јазли
- """
- class Queue:
- """Queue е апстрактна класа / интерфејс. Постојат 3 типа:
- Stack(): Last In First Out Queue (стек).
- FIFOQueue(): First In First Out Queue (редица).
- PriorityQueue(order, f): Queue во сортиран редослед (подразбирливо,од најмалиот кон
- најголемиот јазол).
- """
- def __init__(self):
- raise NotImplementedError
- def append(self, item):
- """Додади го елементот item во редицата
- :param item: даден елемент
- :return: None
- """
- raise NotImplementedError
- def extend(self, items):
- """Додади ги елементите items во редицата
- :param items: дадени елементи
- :return: None
- """
- raise NotImplementedError
- def pop(self):
- """Врати го првиот елемент од редицата
- :return: прв елемент
- """
- raise NotImplementedError
- def __len__(self):
- """Врати го бројот на елементи во редицата
- :return: број на елементи во редицата
- :rtype: int
- """
- raise NotImplementedError
- def __contains__(self, item):
- """Проверка дали редицата го содржи елементот item
- :param item: даден елемент
- :return: дали queue го содржи item
- :rtype: bool
- """
- raise NotImplementedError
- class Stack(Queue):
- """Last-In-First-Out Queue."""
- def __init__(self):
- self.data = []
- def append(self, item):
- self.data.append(item)
- def extend(self, items):
- self.data.extend(items)
- def pop(self):
- return self.data.pop()
- def __len__(self):
- return len(self.data)
- def __contains__(self, item):
- return item in self.data
- class FIFOQueue(Queue):
- """First-In-First-Out Queue."""
- def __init__(self):
- self.data = []
- def append(self, item):
- self.data.append(item)
- def extend(self, items):
- self.data.extend(items)
- def pop(self):
- return self.data.pop(0)
- def __len__(self):
- return len(self.data)
- def __contains__(self, item):
- return item in self.data
- class PriorityQueue(Queue):
- """Редица во која прво се враќа минималниот (или максималниот) елемент
- (како што е определено со f и order). Оваа структура се користи кај
- информирано пребарување"""
- """"""
- def __init__(self, order=min, f=lambda x: x):
- """
- :param order: функција за подредување, ако order е min, се враќа елементот
- со минимална f(x); ако order е max, тогаш се враќа елементот
- со максимална f(x).
- :param f: функција f(x)
- """
- assert order in [min, max]
- self.data = []
- self.order = order
- self.f = f
- def append(self, item):
- bisect.insort_right(self.data, (self.f(item), item))
- def extend(self, items):
- for item in items:
- bisect.insort_right(self.data, (self.f(item), item))
- def pop(self):
- if self.order == min:
- return self.data.pop(0)[1]
- return self.data.pop()[1]
- def __len__(self):
- return len(self.data)
- def __contains__(self, item):
- return any(item == pair[1] for pair in self.data)
- def __getitem__(self, key):
- for _, item in self.data:
- if item == key:
- return item
- def __delitem__(self, key):
- for i, (value, item) in enumerate(self.data):
- if item == key:
- self.data.pop(i)
- def distance(a, b):
- """The distance between two (x, y) points."""
- return math.hypot((a[0] - b[0]), (a[1] - b[1]))
- class Graph:
- """A graph connects nodes (verticies) by edges (links). Each edge can also
- have a length associated with it. The constructor call is something like:
- g = Graph({'A': {'B': 1, 'C': 2})
- this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
- A to B, and an edge of length 2 from A to C. You can also do:
- g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
- This makes an undirected graph, so inverse links are also added. The graph
- stays undirected; if you add more links with g.connect('B', 'C', 3), then
- inverse link is also added. You can use g.nodes() to get a list of nodes,
- g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
- length of the link from A to B. 'Lengths' can actually be any object at
- all, and nodes can be any hashable object."""
- def __init__(self, dictionary=None, directed=True):
- self.dict = dictionary or {}
- self.directed = directed
- if not directed:
- self.make_undirected()
- def make_undirected(self):
- """Make a digraph into an undirected graph by adding symmetric edges."""
- for a in list(self.dict.keys()):
- for (b, dist) in self.dict[a].items():
- self.connect1(b, a, dist)
- def connect(self, node_a, node_b, distance_val=1):
- """Add a link from node_a and node_b of given distance_val, and also add the inverse
- link if the graph is undirected."""
- self.connect1(node_a, node_b, distance_val)
- if not self.directed:
- self.connect1(node_b, node_a, distance_val)
- def connect1(self, node_a, node_b, distance_val):
- """Add a link from node_a to node_b of given distance_val, in one direction only."""
- self.dict.setdefault(node_a, {})[node_b] = distance_val
- def get(self, a, b=None):
- """Return a link distance or a dict of {node: distance} entries.
- .get(a,b) returns the distance or None;
- .get(a) returns a dict of {node: distance} entries, possibly {}."""
- links = self.dict.setdefault(a, {})
- if b is None:
- return links
- else:
- return links.get(b)
- def nodes(self):
- """Return a list of nodes in the graph."""
- return list(self.dict.keys())
- def UndirectedGraph(dictionary=None):
- """Build a Graph where every edge (including future ones) goes both ways."""
- return Graph(dictionary=dictionary, directed=False)
- def RandomGraph(nodes=list(range(10)), min_links=2, width=400, height=300,
- curvature=lambda: random.uniform(1.1, 1.5)):
- """Construct a random graph, with the specified nodes, and random links.
- The nodes are laid out randomly on a (width x height) rectangle.
- Then each node is connected to the min_links nearest neighbors.
- Because inverse links are added, some nodes will have more connections.
- The distance between nodes is the hypotenuse times curvature(),
- where curvature() defaults to a random number between 1.1 and 1.5."""
- g = UndirectedGraph()
- g.locations = {}
- # Build the cities
- for node in nodes:
- g.locations[node] = (random.randrange(width), random.randrange(height))
- # Build roads from each city to at least min_links nearest neighbors.
- for i in range(min_links):
- for node in nodes:
- if len(g.get(node)) < min_links:
- here = g.locations[node]
- def distance_to_node(n):
- if n is node or g.get(node, n):
- return math.inf
- return distance(g.locations[n], here)
- neighbor = nodes.index(min(nodes, key=distance_to_node))
- d = distance(g.locations[neighbor], here) * curvature()
- g.connect(node, neighbor, int(d))
- return g
- class GraphProblem(Problem):
- """The problem of searching a graph from one node to another."""
- def __init__(self, initial, goal, graph):
- super().__init__(initial, goal)
- self.graph = graph
- def actions(self, state):
- """The actions at a graph node are just its neighbors."""
- return list(self.graph.get(state).keys())
- def result(self, state, action):
- """The result of going to a neighbor is just that neighbor."""
- return action
- def path_cost(self, c, state1, action, state2):
- return c + (self.graph.get(state1, state2) or math.inf)
- def h(self, node):
- """h function is straight-line distance from a node's state to goal."""
- locs = getattr(self.graph, 'locations', None)
- if locs:
- return int(distance(locs[node.state], locs[self.goal]))
- else:
- return math.inf
- Pocetok = input()
- Kraj = input()
- Stanica = input()
- graph = UndirectedGraph({
- 'A': {'B': 7, 'F': 14, 'C': 9},
- 'B': {'A': 7, 'C': 10, 'D': 15},
- 'C': {'A': 9, 'B': 10, 'D': 11, 'F': 2},
- 'E': {'F': 9, 'D': 6},
- 'F': {'A': 14, 'C': 2, 'E': 9},
- 'D': {'B': 15, 'C': 11, 'E': 6}
- })
- graph.locations = dict(
- A =(2,2),B=(4,2),C=(4,4),D=(6,3),E=(5,6),F=(1,5)
- )
- graph_problem = GraphProblem(Pocetok, Kraj, graph)
- answer = astar_search(graph_problem)
- if Stanica in answer.solve():
- print(answer.path_cost - 9)
- else:
- print(answer.path_cost)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement