SHARE
TWEET

Untitled

a guest Aug 14th, 2019 60 Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
  1. gap> G:=AlternatingGroup(8);
  2. Alt( [ 1 .. 8 ] )
  3. gap> P1:=[[1,2],[3,4],[5,6],[7,8]];
  4. [ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ 7, 8 ] ]
  5. gap> P2:=[[1,2,3,4],[5,6,7,8]];
  6. [ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ] ]
  7. gap> G1:=Stabilizer(G,P1,OnSetsDisjointSets);
  8. Group([ (5,6)(7,8), (3,4)(7,8), (1,2)(7,8), (3,4)(5,6), (3,6,4,5)(7,8), (3,5,8)(4,6,7), (1,3,5,8)(2,4,6,7) ])
  9. gap> G2:=Stabilizer(G,P2,OnSetsDisjointSets);
  10. Group([ (5,8,7), (5,8)(6,7), (5,7)(6,8), (3,4)(7,8), (2,3,4), (1,4)(2,3), (1,3)(2,4), (1,5,4,7,3,6)(2,8) ])
  11.      
  12. gap> IntermediateSubgroups(G,G1);
  13. rec( inclusions := [ [ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 2, 3 ] ], subgroups := [ Group([ (1,8)(2,7), (1,8,3)(2,7,4), (1,5,2,6)(3,8,4,7), (1,4,2,3)(5,7,6,8), (1,2)(7,8), (3,4)(7,8), (5,6)(7,8), (2,3)(6,7) ]), Group([ (1,8)(2,7), (1,8,3)(2,7,4), (1,5,2,6)(3,8,4,7), (1,4,2,3)(5,7,6,8), (1,2)(7,8), (3,4)(7,8), (5,6)(7,8), (2,3)(6,8) ]) ] )
  14. gap> IntermediateSubgroups(G,G2);
  15. rec( inclusions := [ [ 0, 1 ] ], subgroups := [  ] )
  16.      
  17. gap> H:=Intersection(G1,G2);
  18. Group([ (5,8)(6,7), (5,7)(6,8), (3,4)(5,7,6,8), (1,2)(5,7,6,8), (1,3)(2,4)(5,8)(6,7), (1,5,4,8)(2,6,3,7) ])
  19.  gap> IntermediateSubgroups(G,H);
  20. rec( inclusions := [ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 1, 4 ], [ 1, 5 ], [ 2, 4 ], [ 2, 6 ], [ 3, 5 ], [ 3, 6 ], [ 4, 7 ], [ 5, 7 ], [ 6, 7 ] ],
  21.   subgroups := [ Group([ (1,5)(2,6)(3,7)(4,8), (3,4)(7,8), (2,3,4)(6,7,8), (1,4)(2,3), (5,8)(6,7), (5,7)(6,8), (1,3)(2,4) ]), Group([ (1,5)(2,6)(3,7)(4,8), (3,4)(7,8), (2,4,3)(6,7,8), (1,4)(2,3), (5,8)(6,7), (5,7)(6,8), (1,3)(2,4) ]), Group([ (3,5,8)(4,6,7), (3,4)(5,7,6,8), (1,3)(2,4)(5,7)(6,8) ]), Group([ (1,3)(2,4), (2,3,4), (5,7)(6,8), (1,2,3,4)(5,8,7,6), (1,2,3,4)(5,6), (1,5)(2,6)(3,7)(4,8) ]), Group([ (5,7)(6,8), (2,3,5)(4,7,6), (1,2)(3,4)(5,6)(7,8) ]), Group([ (5,7)(6,8), (1,3,5)(4,7,6), (1,2)(3,4)(5,6)(7,8) ]) ] )
  22.      
  23. gap> G:=SymmetricGroup(8);
  24. Sym( [ 1 .. 8 ] )
  25. gap> G1:=Stabilizer(G,P1,OnSetsDisjointSets);
  26. Group([ (7,8), (5,6), (3,4), (1,2), (3,5,4,6), (3,5,8)(4,6,7), (1,3,5,8)(2,4,6,7) ])
  27. gap> G2:=Stabilizer(G,P2,OnSetsDisjointSets);
  28. Group([ (7,8), (5,8,7), (5,8)(6,7), (5,7)(6,8), (3,4), (2,3,4), (1,4)(2,3), (1,3)(2,4), (1,5,4,7,3,6)(2,8) ])
  29. gap> H:=Intersection(G1,G2);
  30. Group([ (5,6), (5,7,6,8), (3,4)(5,7,6,8), (1,2)(5,7,6,8), (1,3)(2,4)(5,7,6,8), (1,5,3,7,2,6,4,8) ])
  31. gap> IntermediateSubgroups(G,H);
  32. rec( inclusions := [ [ 0, 1 ], [ 0, 2 ], [ 1, 3 ], [ 2, 3 ] ],
  33.   subgroups := [ Group([ (1,2), (3,4), (5,6), (7,8), (1,3,5,7)(2,4,6,8), (1,3)(2,4) ]), Group([ (1,2,3,4), (1,2), (5,6,7,8), (5,6), (1,5)(2,6)(3,7)(4,8) ]) ] )
  34.      
  35. gap> G:=AlternatingGroup(16);
  36. Alt( [ 1 .. 16 ] )
  37. gap> P1:=[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16]];
  38. [ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ 7, 8 ], [ 9, 10 ], [ 11, 12 ], [ 13, 14 ], [ 15, 16 ] ]
  39. gap> P2:=[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
  40. [ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ], [ 13, 14, 15, 16 ] ]
  41. gap> P3:=[[1,2,3,4,5,6,7,8],[9,10,11,12,13,14,15,16]];
  42. [ [ 1, 2, 3, 4, 5, 6, 7, 8 ], [ 9, 10, 11, 12, 13, 14, 15, 16 ] ]
  43. gap> G1:=Stabilizer(G,P1,OnSetsDisjointSets);
  44. <permutation group of size 5160960 with 17 generators>
  45. gap> G2:=Stabilizer(G,P2,OnSetsDisjointSets);
  46. <permutation group of size 3981312 with 19 generators>
  47. gap> G3:=Stabilizer(G,P3,OnSetsDisjointSets);
  48. <permutation group of size 1625702400 with 18 generators>
  49. gap> H:=Intersection(Intersection(G1,G2),G3);
  50. <permutation group with 12 generators>
  51. gap> IntermediateSubgroups(G,H);
  52. rec( inclusions := [ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 1, 4 ], [ 1, 5 ], [ 2, 5 ], [ 2, 6 ], [ 3, 4 ], [ 3, 6 ],[ 4, 7 ], [ 5, 7 ], [ 6, 7 ] ], subgroups := [ Group([ (1,15,4,14)(2,16,3,13), (1,10,8,14)(2,9,7,13)(3,12,6,16)(4,11,5,15), (7,8)(13,14) ]), Group([ (1,9,8,16,6,13)(2,10,7,15,5,14)(3,12)(4,11), (3,7)(4,8), (7,8)(11,12) ]),
  53.       <permutation group of size 1327104 with 18 generators>, <permutation group of size 3981312 with 13 generators>,
  54.       <permutation group of size 5160960 with 9 generators>, <permutation group of size 1625702400 with 6 generators>
  55.      ] )
  56.      
  57. gap> G:=AlternatingGroup(32);
  58. Alt( [ 1 .. 32 ] )
  59. gap> P1:=[[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14],[15,16],[17,18],[19,20],[21,22],[23,24],[25,26],[27,28],[29,30],[31,32]];
  60. [ [ 1, 2 ], [ 3, 4 ], [ 5, 6 ], [ 7, 8 ], [ 9, 10 ], [ 11, 12 ], [ 13, 14 ], [ 15, 16 ], [ 17, 18 ], [ 19, 20 ], [ 21, 22 ], [ 23, 24 ], [ 25, 26 ], [ 27, 28 ], [ 29, 30 ], [ 31, 32 ] ]
  61. gap> P2:=[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20],[21,22,23,24],[25,26,27,28],[29,30,31,32]];
  62. [ [ 1, 2, 3, 4 ], [ 5, 6, 7, 8 ], [ 9, 10, 11, 12 ], [ 13, 14, 15, 16 ], [ 17, 18, 19, 20 ], [ 21, 22, 23, 24 ], [ 25, 26, 27, 28 ], [ 29, 30, 31, 32 ] ]
  63. gap> P3:=[[1,2,3,4,5,6,7,8],[9,10,11,12,13,14,15,16],[17,18,19,20,21,22,23,24],[25,26,27,28,29,30,31,32]];
  64. [ [ 1, 2, 3, 4, 5, 6, 7, 8 ], [ 9, 10, 11, 12, 13, 14, 15, 16 ], [ 17, 18, 19, 20, 21, 22, 23, 24 ], [ 25, 26, 27, 28, 29, 30, 31, 32 ] ]
  65. gap> P4:=[[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16],[17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]];
  66. [ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ], [ 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 ] ]
  67. gap> G1:=Stabilizer(G,P1,OnSetsDisjointSets);
  68. <permutation group of size 685597979049984000 with 37 generators>
  69. gap> G2:=Stabilizer(G,P2,OnSetsDisjointSets);
  70. <permutation group of size 2219118333788160 with 37 generators>
  71. gap> G3:=Stabilizer(G,P3,OnSetsDisjointSets);
  72. <permutation group of size 31714899520389120000 with 35 generators>
  73. gap> G4:=Stabilizer(G,P4,OnSetsDisjointSets);
  74. <permutation group of size 437763136697395052544000000 with 34 generators>
  75. gap> H:=Intersection(Intersection(Intersection(G1,G2),G3),G4);
  76. <permutation group with 22 generators>
  77.      
  78. gap> IntermediateSubgroups(G,H);
RAW Paste Data
We use cookies for various purposes including analytics. By continuing to use Pastebin, you agree to our use of cookies as described in the Cookies Policy. OK, I Understand
Not a member of Pastebin yet?
Sign Up, it unlocks many cool features!
 
Top