Advertisement
Guest User

Untitled

a guest
Aug 2nd, 2017
172
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 45.53 KB | None | 0 0
  1. sina@sina-Z170X-UD3:~/code/caffe$ ./build/tools/caffe train --solver=examples/alexnetfinetune/solver_sina.prototxt
  2. I0802 16:51:20.823194 2858 caffe.cpp:218] Using GPUs 0
  3. I0802 16:51:20.838037 2858 caffe.cpp:223] GPU 0: GeForce GTX 1070
  4. I0802 16:51:21.037343 2858 solver.cpp:44] Initializing solver from parameters:
  5. test_iter: 56
  6. test_interval: 28
  7. base_lr: 0.001
  8. display: 20
  9. max_iter: 5000
  10. lr_policy: "step"
  11. gamma: 0.1
  12. momentum: 0.9
  13. weight_decay: 0.0005
  14. stepsize: 100000
  15. snapshot: 4999
  16. snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_sinatrain"
  17. solver_mode: GPU
  18. device_id: 0
  19. net: "examples/alexnetfinetune/alexnetsade-bn.prototxt"
  20. train_state {
  21. level: 0
  22. stage: ""
  23. }
  24. type: "SGD"
  25. I0802 16:51:21.037497 2858 solver.cpp:87] Creating training net from net file: examples/alexnetfinetune/alexnetsade-bn.prototxt
  26. I0802 16:51:21.037703 2858 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: examples/alexnetfinetune/alexnetsade-bn.prototxt
  27. I0802 16:51:21.037711 2858 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
  28. I0802 16:51:21.037802 2858 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
  29. I0802 16:51:21.037811 2858 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
  30. I0802 16:51:21.037987 2858 net.cpp:53] Initializing net from parameters:
  31. name: "AlexNet"
  32. state {
  33. phase: TRAIN
  34. level: 0
  35. stage: ""
  36. }
  37. layer {
  38. name: "data"
  39. type: "Data"
  40. top: "data"
  41. top: "label"
  42. include {
  43. phase: TRAIN
  44. }
  45. transform_param {
  46. mirror: true
  47. crop_size: 227
  48. mean_file: "examples/Mydataset_train_lmdb/mean_imagetest.binaryproto"
  49. }
  50. data_param {
  51. source: "examples/Mydataset_train_lmdb"
  52. batch_size: 256
  53. backend: LMDB
  54. }
  55. }
  56. layer {
  57. name: "conv1"
  58. type: "Convolution"
  59. bottom: "data"
  60. top: "conv1"
  61. param {
  62. lr_mult: 1
  63. }
  64. convolution_param {
  65. num_output: 64
  66. bias_term: true
  67. pad: 1
  68. kernel_size: 3
  69. stride: 1
  70. weight_filler {
  71. type: "xavier"
  72. }
  73. }
  74. }
  75. layer {
  76. name: "bn1"
  77. type: "BatchNorm"
  78. bottom: "conv1"
  79. top: "conv1"
  80. param {
  81. lr_mult: 0
  82. decay_mult: 0
  83. }
  84. param {
  85. lr_mult: 0
  86. decay_mult: 0
  87. }
  88. param {
  89. lr_mult: 0
  90. decay_mult: 0
  91. }
  92. }
  93. layer {
  94. name: "scale1"
  95. type: "Scale"
  96. bottom: "conv1"
  97. top: "conv1"
  98. scale_param {
  99. bias_term: true
  100. }
  101. }
  102. layer {
  103. name: "relu1"
  104. type: "ReLU"
  105. bottom: "conv1"
  106. top: "conv1"
  107. }
  108. layer {
  109. name: "norm1"
  110. type: "LRN"
  111. bottom: "conv1"
  112. top: "norm1"
  113. lrn_param {
  114. local_size: 5
  115. alpha: 0.0001
  116. beta: 0.75
  117. }
  118. }
  119. layer {
  120. name: "pool1"
  121. type: "Pooling"
  122. bottom: "norm1"
  123. top: "pool1"
  124. pooling_param {
  125. pool: MAX
  126. kernel_size: 3
  127. stride: 2
  128. }
  129. }
  130. layer {
  131. name: "conv2"
  132. type: "Convolution"
  133. bottom: "pool1"
  134. top: "conv2"
  135. param {
  136. lr_mult: 1
  137. decay_mult: 1
  138. }
  139. param {
  140. lr_mult: 2
  141. decay_mult: 0
  142. }
  143. convolution_param {
  144. num_output: 256
  145. pad: 2
  146. kernel_size: 5
  147. group: 2
  148. weight_filler {
  149. type: "gaussian"
  150. std: 0.01
  151. }
  152. bias_filler {
  153. type: "constant"
  154. value: 0.1
  155. }
  156. }
  157. }
  158. layer {
  159. name: "relu2"
  160. type: "ReLU"
  161. bottom: "conv2"
  162. top: "conv2"
  163. }
  164. layer {
  165. name: "norm2"
  166. type: "LRN"
  167. bottom: "conv2"
  168. top: "norm2"
  169. lrn_param {
  170. local_size: 5
  171. alpha: 0.0001
  172. beta: 0.75
  173. }
  174. }
  175. layer {
  176. name: "pool2"
  177. type: "Pooling"
  178. bottom: "norm2"
  179. top: "pool2"
  180. pooling_param {
  181. pool: MAX
  182. kernel_size: 3
  183. stride: 2
  184. }
  185. }
  186. layer {
  187. name: "conv3"
  188. type: "Convolution"
  189. bottom: "pool2"
  190. top: "conv3"
  191. param {
  192. lr_mult: 1
  193. decay_mult: 1
  194. }
  195. param {
  196. lr_mult: 2
  197. decay_mult: 0
  198. }
  199. convolution_param {
  200. num_output: 384
  201. pad: 1
  202. kernel_size: 3
  203. weight_filler {
  204. type: "gaussian"
  205. std: 0.01
  206. }
  207. bias_filler {
  208. type: "constant"
  209. value: 0
  210. }
  211. }
  212. }
  213. layer {
  214. name: "relu3"
  215. type: "ReLU"
  216. bottom: "conv3"
  217. top: "conv3"
  218. }
  219. layer {
  220. name: "conv4"
  221. type: "Convolution"
  222. bottom: "conv3"
  223. top: "conv4"
  224. param {
  225. lr_mult: 1
  226. decay_mult: 1
  227. }
  228. param {
  229. lr_mult: 2
  230. decay_mult: 0
  231. }
  232. convolution_param {
  233. num_output: 384
  234. pad: 1
  235. kernel_size: 3
  236. group: 2
  237. weight_filler {
  238. type: "gaussian"
  239. std: 0.01
  240. }
  241. bias_filler {
  242. type: "constant"
  243. value: 0.1
  244. }
  245. }
  246. }
  247. layer {
  248. name: "relu4"
  249. type: "ReLU"
  250. bottom: "conv4"
  251. top: "conv4"
  252. }
  253. layer {
  254. name: "conv5"
  255. type: "Convolution"
  256. bottom: "conv4"
  257. top: "conv5"
  258. param {
  259. lr_mult: 1
  260. decay_mult: 1
  261. }
  262. param {
  263. lr_mult: 2
  264. decay_mult: 0
  265. }
  266. convolution_param {
  267. num_output: 256
  268. pad: 1
  269. kernel_size: 3
  270. group: 2
  271. weight_filler {
  272. type: "gaussian"
  273. std: 0.01
  274. }
  275. bias_filler {
  276. type: "constant"
  277. value: 0.1
  278. }
  279. }
  280. }
  281. layer {
  282. name: "relu5"
  283. type: "ReLU"
  284. bottom: "conv5"
  285. top: "conv5"
  286. }
  287. layer {
  288. name: "pool5"
  289. type: "Pooling"
  290. bottom: "conv5"
  291. top: "pool5"
  292. pooling_param {
  293. pool: MAX
  294. kernel_size: 3
  295. stride: 2
  296. }
  297. }
  298. layer {
  299. name: "fc6"
  300. type: "InnerProduct"
  301. bottom: "pool5"
  302. top: "fc6"
  303. param {
  304. lr_mult: 1
  305. decay_mult: 1
  306. }
  307. param {
  308. lr_mult: 2
  309. decay_mult: 0
  310. }
  311. inner_product_param {
  312. num_output: 4096
  313. weight_filler {
  314. type: "gaussian"
  315. std: 0.005
  316. }
  317. bias_filler {
  318. type: "constant"
  319. value: 0.1
  320. }
  321. }
  322. }
  323. layer {
  324. name: "relu6"
  325. type: "ReLU"
  326. bottom: "fc6"
  327. top: "fc6"
  328. }
  329. layer {
  330. name: "drop6"
  331. type: "Dropout"
  332. bottom: "fc6"
  333. top: "fc6"
  334. dropout_param {
  335. dropout_ratio: 0.5
  336. }
  337. }
  338. layer {
  339. name: "fc7"
  340. type: "InnerProduct"
  341. bottom: "fc6"
  342. top: "fc7"
  343. param {
  344. lr_mult: 1
  345. decay_mult: 1
  346. }
  347. param {
  348. lr_mult: 2
  349. decay_mult: 0
  350. }
  351. inner_product_param {
  352. num_output: 4096
  353. weight_filler {
  354. type: "gaussian"
  355. std: 0.005
  356. }
  357. bias_filler {
  358. type: "constant"
  359. value: 0.1
  360. }
  361. }
  362. }
  363. layer {
  364. name: "relu7"
  365. type: "ReLU"
  366. bottom: "fc7"
  367. top: "fc7"
  368. }
  369. layer {
  370. name: "drop7"
  371. type: "Dropout"
  372. bottom: "fc7"
  373. top: "fc7"
  374. dropout_param {
  375. dropout_ratio: 0.5
  376. }
  377. }
  378. layer {
  379. name: "fc8"
  380. type: "InnerProduct"
  381. bottom: "fc7"
  382. top: "fc8"
  383. param {
  384. lr_mult: 1
  385. decay_mult: 1
  386. }
  387. param {
  388. lr_mult: 2
  389. decay_mult: 0
  390. }
  391. inner_product_param {
  392. num_output: 1000
  393. weight_filler {
  394. type: "gaussian"
  395. std: 0.01
  396. }
  397. bias_filler {
  398. type: "constant"
  399. value: 0
  400. }
  401. }
  402. }
  403. layer {
  404. name: "loss"
  405. type: "SoftmaxWithLoss"
  406. bottom: "fc8"
  407. bottom: "label"
  408. top: "loss"
  409. }
  410. I0802 16:51:21.052150 2858 layer_factory.hpp:77] Creating layer data
  411. I0802 16:51:21.061594 2858 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_train_lmdb
  412. I0802 16:51:21.091151 2858 net.cpp:86] Creating Layer data
  413. I0802 16:51:21.091212 2858 net.cpp:382] data -> data
  414. I0802 16:51:21.091265 2858 net.cpp:382] data -> label
  415. I0802 16:51:21.091301 2858 data_transformer.cpp:25] Loading mean file from: examples/Mydataset_train_lmdb/mean_imagetest.binaryproto
  416. I0802 16:51:21.125758 2858 data_layer.cpp:45] output data size: 256,3,227,227
  417. I0802 16:51:21.312355 2858 net.cpp:124] Setting up data
  418. I0802 16:51:21.312403 2858 net.cpp:131] Top shape: 256 3 227 227 (39574272)
  419. I0802 16:51:21.312408 2858 net.cpp:131] Top shape: 256 (256)
  420. I0802 16:51:21.312433 2858 net.cpp:139] Memory required for data: 158298112
  421. I0802 16:51:21.312441 2858 layer_factory.hpp:77] Creating layer conv1
  422. I0802 16:51:21.312459 2858 net.cpp:86] Creating Layer conv1
  423. I0802 16:51:21.312463 2858 net.cpp:408] conv1 <- data
  424. I0802 16:51:21.312500 2858 net.cpp:382] conv1 -> conv1
  425. I0802 16:51:25.388608 2858 net.cpp:124] Setting up conv1
  426. I0802 16:51:25.388659 2858 net.cpp:131] Top shape: 256 64 227 227 (844251136)
  427. I0802 16:51:25.388669 2858 net.cpp:139] Memory required for data: 3535302656
  428. I0802 16:51:25.388715 2858 layer_factory.hpp:77] Creating layer bn1
  429. I0802 16:51:25.388741 2858 net.cpp:86] Creating Layer bn1
  430. I0802 16:51:25.388752 2858 net.cpp:408] bn1 <- conv1
  431. I0802 16:51:25.388772 2858 net.cpp:369] bn1 -> conv1 (in-place)
  432. I0802 16:51:25.389351 2858 net.cpp:124] Setting up bn1
  433. I0802 16:51:25.389370 2858 net.cpp:131] Top shape: 256 64 227 227 (844251136)
  434. I0802 16:51:25.389380 2858 net.cpp:139] Memory required for data: 6912307200
  435. I0802 16:51:25.389405 2858 layer_factory.hpp:77] Creating layer scale1
  436. I0802 16:51:25.389463 2858 net.cpp:86] Creating Layer scale1
  437. I0802 16:51:25.389472 2858 net.cpp:408] scale1 <- conv1
  438. I0802 16:51:25.389487 2858 net.cpp:369] scale1 -> conv1 (in-place)
  439. I0802 16:51:25.389588 2858 layer_factory.hpp:77] Creating layer scale1
  440. I0802 16:51:25.390061 2858 net.cpp:124] Setting up scale1
  441. I0802 16:51:25.390081 2858 net.cpp:131] Top shape: 256 64 227 227 (844251136)
  442. I0802 16:51:25.390090 2858 net.cpp:139] Memory required for data: 10289311744
  443. I0802 16:51:25.390106 2858 layer_factory.hpp:77] Creating layer relu1
  444. I0802 16:51:25.390122 2858 net.cpp:86] Creating Layer relu1
  445. I0802 16:51:25.390132 2858 net.cpp:408] relu1 <- conv1
  446. I0802 16:51:25.390148 2858 net.cpp:369] relu1 -> conv1 (in-place)
  447. I0802 16:51:25.390626 2858 net.cpp:124] Setting up relu1
  448. I0802 16:51:25.390648 2858 net.cpp:131] Top shape: 256 64 227 227 (844251136)
  449. I0802 16:51:25.390660 2858 net.cpp:139] Memory required for data: 13666316288
  450. I0802 16:51:25.390671 2858 layer_factory.hpp:77] Creating layer norm1
  451. I0802 16:51:25.390696 2858 net.cpp:86] Creating Layer norm1
  452. I0802 16:51:25.390707 2858 net.cpp:408] norm1 <- conv1
  453. I0802 16:51:25.390722 2858 net.cpp:382] norm1 -> norm1
  454. I0802 16:51:25.391862 2858 net.cpp:124] Setting up norm1
  455. I0802 16:51:25.391892 2858 net.cpp:131] Top shape: 256 64 227 227 (844251136)
  456. I0802 16:51:25.391901 2858 net.cpp:139] Memory required for data: 17043320832
  457. I0802 16:51:25.391908 2858 layer_factory.hpp:77] Creating layer pool1
  458. I0802 16:51:25.391926 2858 net.cpp:86] Creating Layer pool1
  459. I0802 16:51:25.391937 2858 net.cpp:408] pool1 <- norm1
  460. I0802 16:51:25.391955 2858 net.cpp:382] pool1 -> pool1
  461. I0802 16:51:25.392066 2858 net.cpp:124] Setting up pool1
  462. I0802 16:51:25.392094 2858 net.cpp:131] Top shape: 256 64 113 113 (209207296)
  463. I0802 16:51:25.392102 2858 net.cpp:139] Memory required for data: 17880150016
  464. I0802 16:51:25.392109 2858 layer_factory.hpp:77] Creating layer conv2
  465. I0802 16:51:25.392133 2858 net.cpp:86] Creating Layer conv2
  466. I0802 16:51:25.392145 2858 net.cpp:408] conv2 <- pool1
  467. I0802 16:51:25.392159 2858 net.cpp:382] conv2 -> conv2
  468. I0802 16:51:25.425178 2858 net.cpp:124] Setting up conv2
  469. I0802 16:51:25.425228 2858 net.cpp:131] Top shape: 256 256 113 113 (836829184)
  470. I0802 16:51:25.425236 2858 net.cpp:139] Memory required for data: 21227466752
  471. I0802 16:51:25.425261 2858 layer_factory.hpp:77] Creating layer relu2
  472. I0802 16:51:25.425282 2858 net.cpp:86] Creating Layer relu2
  473. I0802 16:51:25.425290 2858 net.cpp:408] relu2 <- conv2
  474. I0802 16:51:25.425305 2858 net.cpp:369] relu2 -> conv2 (in-place)
  475. I0802 16:51:25.426239 2858 net.cpp:124] Setting up relu2
  476. I0802 16:51:25.426262 2858 net.cpp:131] Top shape: 256 256 113 113 (836829184)
  477. I0802 16:51:25.426268 2858 net.cpp:139] Memory required for data: 24574783488
  478. I0802 16:51:25.426275 2858 layer_factory.hpp:77] Creating layer norm2
  479. I0802 16:51:25.426290 2858 net.cpp:86] Creating Layer norm2
  480. I0802 16:51:25.426297 2858 net.cpp:408] norm2 <- conv2
  481. I0802 16:51:25.426311 2858 net.cpp:382] norm2 -> norm2
  482. I0802 16:51:25.426684 2858 net.cpp:124] Setting up norm2
  483. I0802 16:51:25.426702 2858 net.cpp:131] Top shape: 256 256 113 113 (836829184)
  484. I0802 16:51:25.426707 2858 net.cpp:139] Memory required for data: 27922100224
  485. I0802 16:51:25.426712 2858 layer_factory.hpp:77] Creating layer pool2
  486. I0802 16:51:25.426723 2858 net.cpp:86] Creating Layer pool2
  487. I0802 16:51:25.426730 2858 net.cpp:408] pool2 <- norm2
  488. I0802 16:51:25.426743 2858 net.cpp:382] pool2 -> pool2
  489. I0802 16:51:25.426808 2858 net.cpp:124] Setting up pool2
  490. I0802 16:51:25.426821 2858 net.cpp:131] Top shape: 256 256 56 56 (205520896)
  491. I0802 16:51:25.426828 2858 net.cpp:139] Memory required for data: 28744183808
  492. I0802 16:51:25.426833 2858 layer_factory.hpp:77] Creating layer conv3
  493. I0802 16:51:25.426847 2858 net.cpp:86] Creating Layer conv3
  494. I0802 16:51:25.426856 2858 net.cpp:408] conv3 <- pool2
  495. I0802 16:51:25.426870 2858 net.cpp:382] conv3 -> conv3
  496. I0802 16:51:25.447731 2858 net.cpp:124] Setting up conv3
  497. I0802 16:51:25.447755 2858 net.cpp:131] Top shape: 256 384 56 56 (308281344)
  498. I0802 16:51:25.447782 2858 net.cpp:139] Memory required for data: 29977309184
  499. I0802 16:51:25.447793 2858 layer_factory.hpp:77] Creating layer relu3
  500. I0802 16:51:25.447803 2858 net.cpp:86] Creating Layer relu3
  501. I0802 16:51:25.447808 2858 net.cpp:408] relu3 <- conv3
  502. I0802 16:51:25.447816 2858 net.cpp:369] relu3 -> conv3 (in-place)
  503. I0802 16:51:25.448030 2858 net.cpp:124] Setting up relu3
  504. I0802 16:51:25.448040 2858 net.cpp:131] Top shape: 256 384 56 56 (308281344)
  505. I0802 16:51:25.448042 2858 net.cpp:139] Memory required for data: 31210434560
  506. I0802 16:51:25.448047 2858 layer_factory.hpp:77] Creating layer conv4
  507. I0802 16:51:25.448058 2858 net.cpp:86] Creating Layer conv4
  508. I0802 16:51:25.448061 2858 net.cpp:408] conv4 <- conv3
  509. I0802 16:51:25.448070 2858 net.cpp:382] conv4 -> conv4
  510. I0802 16:51:25.458153 2858 net.cpp:124] Setting up conv4
  511. I0802 16:51:25.458170 2858 net.cpp:131] Top shape: 256 384 56 56 (308281344)
  512. I0802 16:51:25.458173 2858 net.cpp:139] Memory required for data: 32443559936
  513. I0802 16:51:25.458181 2858 layer_factory.hpp:77] Creating layer relu4
  514. I0802 16:51:25.458189 2858 net.cpp:86] Creating Layer relu4
  515. I0802 16:51:25.458191 2858 net.cpp:408] relu4 <- conv4
  516. I0802 16:51:25.458195 2858 net.cpp:369] relu4 -> conv4 (in-place)
  517. I0802 16:51:25.458353 2858 net.cpp:124] Setting up relu4
  518. I0802 16:51:25.458360 2858 net.cpp:131] Top shape: 256 384 56 56 (308281344)
  519. I0802 16:51:25.458362 2858 net.cpp:139] Memory required for data: 33676685312
  520. I0802 16:51:25.458365 2858 layer_factory.hpp:77] Creating layer conv5
  521. I0802 16:51:25.458374 2858 net.cpp:86] Creating Layer conv5
  522. I0802 16:51:25.458377 2858 net.cpp:408] conv5 <- conv4
  523. I0802 16:51:25.458384 2858 net.cpp:382] conv5 -> conv5
  524. I0802 16:51:25.464239 2858 net.cpp:124] Setting up conv5
  525. I0802 16:51:25.464249 2858 net.cpp:131] Top shape: 256 256 56 56 (205520896)
  526. I0802 16:51:25.464252 2858 net.cpp:139] Memory required for data: 34498768896
  527. I0802 16:51:25.464257 2858 layer_factory.hpp:77] Creating layer relu5
  528. I0802 16:51:25.464265 2858 net.cpp:86] Creating Layer relu5
  529. I0802 16:51:25.464267 2858 net.cpp:408] relu5 <- conv5
  530. I0802 16:51:25.464272 2858 net.cpp:369] relu5 -> conv5 (in-place)
  531. I0802 16:51:25.464406 2858 net.cpp:124] Setting up relu5
  532. I0802 16:51:25.464411 2858 net.cpp:131] Top shape: 256 256 56 56 (205520896)
  533. I0802 16:51:25.464413 2858 net.cpp:139] Memory required for data: 35320852480
  534. I0802 16:51:25.464416 2858 layer_factory.hpp:77] Creating layer pool5
  535. I0802 16:51:25.464421 2858 net.cpp:86] Creating Layer pool5
  536. I0802 16:51:25.464422 2858 net.cpp:408] pool5 <- conv5
  537. I0802 16:51:25.464426 2858 net.cpp:382] pool5 -> pool5
  538. I0802 16:51:25.464458 2858 net.cpp:124] Setting up pool5
  539. I0802 16:51:25.464463 2858 net.cpp:131] Top shape: 256 256 28 28 (51380224)
  540. I0802 16:51:25.464465 2858 net.cpp:139] Memory required for data: 35526373376
  541. I0802 16:51:25.464468 2858 layer_factory.hpp:77] Creating layer fc6
  542. I0802 16:51:25.464473 2858 net.cpp:86] Creating Layer fc6
  543. I0802 16:51:25.464475 2858 net.cpp:408] fc6 <- pool5
  544. I0802 16:51:25.464479 2858 net.cpp:382] fc6 -> fc6
  545. I0802 16:51:31.718487 2858 net.cpp:124] Setting up fc6
  546. I0802 16:51:31.718506 2858 net.cpp:131] Top shape: 256 4096 (1048576)
  547. I0802 16:51:31.718508 2858 net.cpp:139] Memory required for data: 35530567680
  548. I0802 16:51:31.718533 2858 layer_factory.hpp:77] Creating layer relu6
  549. I0802 16:51:31.718540 2858 net.cpp:86] Creating Layer relu6
  550. I0802 16:51:31.718544 2858 net.cpp:408] relu6 <- fc6
  551. I0802 16:51:31.718564 2858 net.cpp:369] relu6 -> fc6 (in-place)
  552. I0802 16:51:31.718791 2858 net.cpp:124] Setting up relu6
  553. I0802 16:51:31.718797 2858 net.cpp:131] Top shape: 256 4096 (1048576)
  554. I0802 16:51:31.718799 2858 net.cpp:139] Memory required for data: 35534761984
  555. I0802 16:51:31.718801 2858 layer_factory.hpp:77] Creating layer drop6
  556. I0802 16:51:31.718806 2858 net.cpp:86] Creating Layer drop6
  557. I0802 16:51:31.718807 2858 net.cpp:408] drop6 <- fc6
  558. I0802 16:51:31.718825 2858 net.cpp:369] drop6 -> fc6 (in-place)
  559. I0802 16:51:31.718860 2858 net.cpp:124] Setting up drop6
  560. I0802 16:51:31.718896 2858 net.cpp:131] Top shape: 256 4096 (1048576)
  561. I0802 16:51:31.718899 2858 net.cpp:139] Memory required for data: 35538956288
  562. I0802 16:51:31.718901 2858 layer_factory.hpp:77] Creating layer fc7
  563. I0802 16:51:31.718921 2858 net.cpp:86] Creating Layer fc7
  564. I0802 16:51:31.718924 2858 net.cpp:408] fc7 <- fc6
  565. I0802 16:51:31.718940 2858 net.cpp:382] fc7 -> fc7
  566. I0802 16:51:31.848628 2858 net.cpp:124] Setting up fc7
  567. I0802 16:51:31.848644 2858 net.cpp:131] Top shape: 256 4096 (1048576)
  568. I0802 16:51:31.848646 2858 net.cpp:139] Memory required for data: 35543150592
  569. I0802 16:51:31.848654 2858 layer_factory.hpp:77] Creating layer relu7
  570. I0802 16:51:31.848675 2858 net.cpp:86] Creating Layer relu7
  571. I0802 16:51:31.848678 2858 net.cpp:408] relu7 <- fc7
  572. I0802 16:51:31.848697 2858 net.cpp:369] relu7 -> fc7 (in-place)
  573. I0802 16:51:31.849135 2858 net.cpp:124] Setting up relu7
  574. I0802 16:51:31.849146 2858 net.cpp:131] Top shape: 256 4096 (1048576)
  575. I0802 16:51:31.849148 2858 net.cpp:139] Memory required for data: 35547344896
  576. I0802 16:51:31.849150 2858 layer_factory.hpp:77] Creating layer drop7
  577. I0802 16:51:31.849154 2858 net.cpp:86] Creating Layer drop7
  578. I0802 16:51:31.849171 2858 net.cpp:408] drop7 <- fc7
  579. I0802 16:51:31.849174 2858 net.cpp:369] drop7 -> fc7 (in-place)
  580. I0802 16:51:31.849221 2858 net.cpp:124] Setting up drop7
  581. I0802 16:51:31.849225 2858 net.cpp:131] Top shape: 256 4096 (1048576)
  582. I0802 16:51:31.849227 2858 net.cpp:139] Memory required for data: 35551539200
  583. I0802 16:51:31.849230 2858 layer_factory.hpp:77] Creating layer fc8
  584. I0802 16:51:31.849248 2858 net.cpp:86] Creating Layer fc8
  585. I0802 16:51:31.849251 2858 net.cpp:408] fc8 <- fc7
  586. I0802 16:51:31.849256 2858 net.cpp:382] fc8 -> fc8
  587. I0802 16:51:31.881816 2858 net.cpp:124] Setting up fc8
  588. I0802 16:51:31.881834 2858 net.cpp:131] Top shape: 256 1000 (256000)
  589. I0802 16:51:31.881835 2858 net.cpp:139] Memory required for data: 35552563200
  590. I0802 16:51:31.881857 2858 layer_factory.hpp:77] Creating layer loss
  591. I0802 16:51:31.881878 2858 net.cpp:86] Creating Layer loss
  592. I0802 16:51:31.881881 2858 net.cpp:408] loss <- fc8
  593. I0802 16:51:31.881898 2858 net.cpp:408] loss <- label
  594. I0802 16:51:31.881903 2858 net.cpp:382] loss -> loss
  595. I0802 16:51:31.881927 2858 layer_factory.hpp:77] Creating layer loss
  596. I0802 16:51:31.882881 2858 net.cpp:124] Setting up loss
  597. I0802 16:51:31.882890 2858 net.cpp:131] Top shape: (1)
  598. I0802 16:51:31.882894 2858 net.cpp:134] with loss weight 1
  599. I0802 16:51:31.882920 2858 net.cpp:139] Memory required for data: 35552563204
  600. I0802 16:51:31.882925 2858 net.cpp:200] loss needs backward computation.
  601. I0802 16:51:31.882930 2858 net.cpp:200] fc8 needs backward computation.
  602. I0802 16:51:31.882946 2858 net.cpp:200] drop7 needs backward computation.
  603. I0802 16:51:31.882949 2858 net.cpp:200] relu7 needs backward computation.
  604. I0802 16:51:31.882953 2858 net.cpp:200] fc7 needs backward computation.
  605. I0802 16:51:31.882971 2858 net.cpp:200] drop6 needs backward computation.
  606. I0802 16:51:31.882973 2858 net.cpp:200] relu6 needs backward computation.
  607. I0802 16:51:31.882977 2858 net.cpp:200] fc6 needs backward computation.
  608. I0802 16:51:31.882979 2858 net.cpp:200] pool5 needs backward computation.
  609. I0802 16:51:31.882982 2858 net.cpp:200] relu5 needs backward computation.
  610. I0802 16:51:31.882999 2858 net.cpp:200] conv5 needs backward computation.
  611. I0802 16:51:31.883002 2858 net.cpp:200] relu4 needs backward computation.
  612. I0802 16:51:31.883004 2858 net.cpp:200] conv4 needs backward computation.
  613. I0802 16:51:31.883008 2858 net.cpp:200] relu3 needs backward computation.
  614. I0802 16:51:31.883024 2858 net.cpp:200] conv3 needs backward computation.
  615. I0802 16:51:31.883028 2858 net.cpp:200] pool2 needs backward computation.
  616. I0802 16:51:31.883031 2858 net.cpp:200] norm2 needs backward computation.
  617. I0802 16:51:31.883034 2858 net.cpp:200] relu2 needs backward computation.
  618. I0802 16:51:31.883038 2858 net.cpp:200] conv2 needs backward computation.
  619. I0802 16:51:31.883041 2858 net.cpp:200] pool1 needs backward computation.
  620. I0802 16:51:31.883056 2858 net.cpp:200] norm1 needs backward computation.
  621. I0802 16:51:31.883087 2858 net.cpp:200] relu1 needs backward computation.
  622. I0802 16:51:31.883091 2858 net.cpp:200] scale1 needs backward computation.
  623. I0802 16:51:31.883095 2858 net.cpp:200] bn1 needs backward computation.
  624. I0802 16:51:31.883110 2858 net.cpp:200] conv1 needs backward computation.
  625. I0802 16:51:31.883112 2858 net.cpp:202] data does not need backward computation.
  626. I0802 16:51:31.883116 2858 net.cpp:244] This network produces output loss
  627. I0802 16:51:31.883142 2858 net.cpp:257] Network initialization done.
  628. I0802 16:51:31.883363 2858 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: examples/alexnetfinetune/alexnetsade-bn.prototxt
  629. I0802 16:51:31.883368 2858 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
  630. I0802 16:51:31.883388 2858 solver.cpp:173] Creating test net (#0) specified by net file: examples/alexnetfinetune/alexnetsade-bn.prototxt
  631. I0802 16:51:31.883411 2858 net.cpp:296] The NetState phase (1) differed from the phase (0) specified by a rule in layer data
  632. I0802 16:51:31.883577 2858 net.cpp:53] Initializing net from parameters:
  633. name: "AlexNet"
  634. state {
  635. phase: TEST
  636. }
  637. layer {
  638. name: "data"
  639. type: "Data"
  640. top: "data"
  641. top: "label"
  642. include {
  643. phase: TEST
  644. }
  645. transform_param {
  646. mirror: false
  647. crop_size: 227
  648. mean_file: "examples/Mydataset_test_lmdb/mean_imagetest.binaryproto"
  649. }
  650. data_param {
  651. source: "examples/Mydataset_test_lmdb"
  652. batch_size: 50
  653. backend: LMDB
  654. }
  655. }
  656. layer {
  657. name: "conv1"
  658. type: "Convolution"
  659. bottom: "data"
  660. top: "conv1"
  661. param {
  662. lr_mult: 1
  663. }
  664. convolution_param {
  665. num_output: 64
  666. bias_term: true
  667. pad: 1
  668. kernel_size: 3
  669. stride: 1
  670. weight_filler {
  671. type: "xavier"
  672. }
  673. }
  674. }
  675. layer {
  676. name: "bn1"
  677. type: "BatchNorm"
  678. bottom: "conv1"
  679. top: "conv1"
  680. param {
  681. lr_mult: 0
  682. decay_mult: 0
  683. }
  684. param {
  685. lr_mult: 0
  686. decay_mult: 0
  687. }
  688. param {
  689. lr_mult: 0
  690. decay_mult: 0
  691. }
  692. }
  693. layer {
  694. name: "scale1"
  695. type: "Scale"
  696. bottom: "conv1"
  697. top: "conv1"
  698. scale_param {
  699. bias_term: true
  700. }
  701. }
  702. layer {
  703. name: "relu1"
  704. type: "ReLU"
  705. bottom: "conv1"
  706. top: "conv1"
  707. }
  708. layer {
  709. name: "norm1"
  710. type: "LRN"
  711. bottom: "conv1"
  712. top: "norm1"
  713. lrn_param {
  714. local_size: 5
  715. alpha: 0.0001
  716. beta: 0.75
  717. }
  718. }
  719. layer {
  720. name: "pool1"
  721. type: "Pooling"
  722. bottom: "norm1"
  723. top: "pool1"
  724. pooling_param {
  725. pool: MAX
  726. kernel_size: 3
  727. stride: 2
  728. }
  729. }
  730. layer {
  731. name: "conv2"
  732. type: "Convolution"
  733. bottom: "pool1"
  734. top: "conv2"
  735. param {
  736. lr_mult: 1
  737. decay_mult: 1
  738. }
  739. param {
  740. lr_mult: 2
  741. decay_mult: 0
  742. }
  743. convolution_param {
  744. num_output: 256
  745. pad: 2
  746. kernel_size: 5
  747. group: 2
  748. weight_filler {
  749. type: "gaussian"
  750. std: 0.01
  751. }
  752. bias_filler {
  753. type: "constant"
  754. value: 0.1
  755. }
  756. }
  757. }
  758. layer {
  759. name: "relu2"
  760. type: "ReLU"
  761. bottom: "conv2"
  762. top: "conv2"
  763. }
  764. layer {
  765. name: "norm2"
  766. type: "LRN"
  767. bottom: "conv2"
  768. top: "norm2"
  769. lrn_param {
  770. local_size: 5
  771. alpha: 0.0001
  772. beta: 0.75
  773. }
  774. }
  775. layer {
  776. name: "pool2"
  777. type: "Pooling"
  778. bottom: "norm2"
  779. top: "pool2"
  780. pooling_param {
  781. pool: MAX
  782. kernel_size: 3
  783. stride: 2
  784. }
  785. }
  786. layer {
  787. name: "conv3"
  788. type: "Convolution"
  789. bottom: "pool2"
  790. top: "conv3"
  791. param {
  792. lr_mult: 1
  793. decay_mult: 1
  794. }
  795. param {
  796. lr_mult: 2
  797. decay_mult: 0
  798. }
  799. convolution_param {
  800. num_output: 384
  801. pad: 1
  802. kernel_size: 3
  803. weight_filler {
  804. type: "gaussian"
  805. std: 0.01
  806. }
  807. bias_filler {
  808. type: "constant"
  809. value: 0
  810. }
  811. }
  812. }
  813. layer {
  814. name: "relu3"
  815. type: "ReLU"
  816. bottom: "conv3"
  817. top: "conv3"
  818. }
  819. layer {
  820. name: "conv4"
  821. type: "Convolution"
  822. bottom: "conv3"
  823. top: "conv4"
  824. param {
  825. lr_mult: 1
  826. decay_mult: 1
  827. }
  828. param {
  829. lr_mult: 2
  830. decay_mult: 0
  831. }
  832. convolution_param {
  833. num_output: 384
  834. pad: 1
  835. kernel_size: 3
  836. group: 2
  837. weight_filler {
  838. type: "gaussian"
  839. std: 0.01
  840. }
  841. bias_filler {
  842. type: "constant"
  843. value: 0.1
  844. }
  845. }
  846. }
  847. layer {
  848. name: "relu4"
  849. type: "ReLU"
  850. bottom: "conv4"
  851. top: "conv4"
  852. }
  853. layer {
  854. name: "conv5"
  855. type: "Convolution"
  856. bottom: "conv4"
  857. top: "conv5"
  858. param {
  859. lr_mult: 1
  860. decay_mult: 1
  861. }
  862. param {
  863. lr_mult: 2
  864. decay_mult: 0
  865. }
  866. convolution_param {
  867. num_output: 256
  868. pad: 1
  869. kernel_size: 3
  870. group: 2
  871. weight_filler {
  872. type: "gaussian"
  873. std: 0.01
  874. }
  875. bias_filler {
  876. type: "constant"
  877. value: 0.1
  878. }
  879. }
  880. }
  881. layer {
  882. name: "relu5"
  883. type: "ReLU"
  884. bottom: "conv5"
  885. top: "conv5"
  886. }
  887. layer {
  888. name: "pool5"
  889. type: "Pooling"
  890. bottom: "conv5"
  891. top: "pool5"
  892. pooling_param {
  893. pool: MAX
  894. kernel_size: 3
  895. stride: 2
  896. }
  897. }
  898. layer {
  899. name: "fc6"
  900. type: "InnerProduct"
  901. bottom: "pool5"
  902. top: "fc6"
  903. param {
  904. lr_mult: 1
  905. decay_mult: 1
  906. }
  907. param {
  908. lr_mult: 2
  909. decay_mult: 0
  910. }
  911. inner_product_param {
  912. num_output: 4096
  913. weight_filler {
  914. type: "gaussian"
  915. std: 0.005
  916. }
  917. bias_filler {
  918. type: "constant"
  919. value: 0.1
  920. }
  921. }
  922. }
  923. layer {
  924. name: "relu6"
  925. type: "ReLU"
  926. bottom: "fc6"
  927. top: "fc6"
  928. }
  929. layer {
  930. name: "drop6"
  931. type: "Dropout"
  932. bottom: "fc6"
  933. top: "fc6"
  934. dropout_param {
  935. dropout_ratio: 0.5
  936. }
  937. }
  938. layer {
  939. name: "fc7"
  940. type: "InnerProduct"
  941. bottom: "fc6"
  942. top: "fc7"
  943. param {
  944. lr_mult: 1
  945. decay_mult: 1
  946. }
  947. param {
  948. lr_mult: 2
  949. decay_mult: 0
  950. }
  951. inner_product_param {
  952. num_output: 4096
  953. weight_filler {
  954. type: "gaussian"
  955. std: 0.005
  956. }
  957. bias_filler {
  958. type: "constant"
  959. value: 0.1
  960. }
  961. }
  962. }
  963. layer {
  964. name: "relu7"
  965. type: "ReLU"
  966. bottom: "fc7"
  967. top: "fc7"
  968. }
  969. layer {
  970. name: "drop7"
  971. type: "Dropout"
  972. bottom: "fc7"
  973. top: "fc7"
  974. dropout_param {
  975. dropout_ratio: 0.5
  976. }
  977. }
  978. layer {
  979. name: "fc8"
  980. type: "InnerProduct"
  981. bottom: "fc7"
  982. top: "fc8"
  983. param {
  984. lr_mult: 1
  985. decay_mult: 1
  986. }
  987. param {
  988. lr_mult: 2
  989. decay_mult: 0
  990. }
  991. inner_product_param {
  992. num_output: 1000
  993. weight_filler {
  994. type: "gaussian"
  995. std: 0.01
  996. }
  997. bias_filler {
  998. type: "constant"
  999. value: 0
  1000. }
  1001. }
  1002. }
  1003. layer {
  1004. name: "accuracy"
  1005. type: "Accuracy"
  1006. bottom: "fc8"
  1007. bottom: "label"
  1008. top: "accuracy"
  1009. include {
  1010. phase: TEST
  1011. }
  1012. }
  1013. layer {
  1014. name: "loss"
  1015. type: "SoftmaxWithLoss"
  1016. bottom: "fc8"
  1017. bottom: "label"
  1018. top: "loss"
  1019. }
  1020. I0802 16:51:31.883865 2858 layer_factory.hpp:77] Creating layer data
  1021. I0802 16:51:31.903520 2858 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_test_lmdb
  1022. I0802 16:51:31.915539 2858 net.cpp:86] Creating Layer data
  1023. I0802 16:51:31.915576 2858 net.cpp:382] data -> data
  1024. I0802 16:51:31.915601 2858 net.cpp:382] data -> label
  1025. I0802 16:51:31.915618 2858 data_transformer.cpp:25] Loading mean file from: examples/Mydataset_test_lmdb/mean_imagetest.binaryproto
  1026. I0802 16:51:31.949586 2858 data_layer.cpp:45] output data size: 50,3,227,227
  1027. I0802 16:51:32.009131 2858 net.cpp:124] Setting up data
  1028. I0802 16:51:32.009177 2858 net.cpp:131] Top shape: 50 3 227 227 (7729350)
  1029. I0802 16:51:32.009181 2858 net.cpp:131] Top shape: 50 (50)
  1030. I0802 16:51:32.009186 2858 net.cpp:139] Memory required for data: 30917600
  1031. I0802 16:51:32.009212 2858 layer_factory.hpp:77] Creating layer label_data_1_split
  1032. I0802 16:51:32.009222 2858 net.cpp:86] Creating Layer label_data_1_split
  1033. I0802 16:51:32.009227 2858 net.cpp:408] label_data_1_split <- label
  1034. I0802 16:51:32.009232 2858 net.cpp:382] label_data_1_split -> label_data_1_split_0
  1035. I0802 16:51:32.009241 2858 net.cpp:382] label_data_1_split -> label_data_1_split_1
  1036. I0802 16:51:32.009376 2858 net.cpp:124] Setting up label_data_1_split
  1037. I0802 16:51:32.009400 2858 net.cpp:131] Top shape: 50 (50)
  1038. I0802 16:51:32.009403 2858 net.cpp:131] Top shape: 50 (50)
  1039. I0802 16:51:32.009407 2858 net.cpp:139] Memory required for data: 30918000
  1040. I0802 16:51:32.009428 2858 layer_factory.hpp:77] Creating layer conv1
  1041. I0802 16:51:32.009438 2858 net.cpp:86] Creating Layer conv1
  1042. I0802 16:51:32.009441 2858 net.cpp:408] conv1 <- data
  1043. I0802 16:51:32.009446 2858 net.cpp:382] conv1 -> conv1
  1044. I0802 16:51:32.012914 2858 net.cpp:124] Setting up conv1
  1045. I0802 16:51:32.012955 2858 net.cpp:131] Top shape: 50 64 227 227 (164892800)
  1046. I0802 16:51:32.012959 2858 net.cpp:139] Memory required for data: 690489200
  1047. I0802 16:51:32.012984 2858 layer_factory.hpp:77] Creating layer bn1
  1048. I0802 16:51:32.012991 2858 net.cpp:86] Creating Layer bn1
  1049. I0802 16:51:32.012995 2858 net.cpp:408] bn1 <- conv1
  1050. I0802 16:51:32.013000 2858 net.cpp:369] bn1 -> conv1 (in-place)
  1051. I0802 16:51:32.013191 2858 net.cpp:124] Setting up bn1
  1052. I0802 16:51:32.013196 2858 net.cpp:131] Top shape: 50 64 227 227 (164892800)
  1053. I0802 16:51:32.013213 2858 net.cpp:139] Memory required for data: 1350060400
  1054. I0802 16:51:32.013221 2858 layer_factory.hpp:77] Creating layer scale1
  1055. I0802 16:51:32.013226 2858 net.cpp:86] Creating Layer scale1
  1056. I0802 16:51:32.013228 2858 net.cpp:408] scale1 <- conv1
  1057. I0802 16:51:32.013233 2858 net.cpp:369] scale1 -> conv1 (in-place)
  1058. I0802 16:51:32.013275 2858 layer_factory.hpp:77] Creating layer scale1
  1059. I0802 16:51:32.013424 2858 net.cpp:124] Setting up scale1
  1060. I0802 16:51:32.013429 2858 net.cpp:131] Top shape: 50 64 227 227 (164892800)
  1061. I0802 16:51:32.013433 2858 net.cpp:139] Memory required for data: 2009631600
  1062. I0802 16:51:32.013438 2858 layer_factory.hpp:77] Creating layer relu1
  1063. I0802 16:51:32.013443 2858 net.cpp:86] Creating Layer relu1
  1064. I0802 16:51:32.013447 2858 net.cpp:408] relu1 <- conv1
  1065. I0802 16:51:32.013450 2858 net.cpp:369] relu1 -> conv1 (in-place)
  1066. I0802 16:51:32.013588 2858 net.cpp:124] Setting up relu1
  1067. I0802 16:51:32.013594 2858 net.cpp:131] Top shape: 50 64 227 227 (164892800)
  1068. I0802 16:51:32.013597 2858 net.cpp:139] Memory required for data: 2669202800
  1069. I0802 16:51:32.013600 2858 layer_factory.hpp:77] Creating layer norm1
  1070. I0802 16:51:32.013604 2858 net.cpp:86] Creating Layer norm1
  1071. I0802 16:51:32.013607 2858 net.cpp:408] norm1 <- conv1
  1072. I0802 16:51:32.013612 2858 net.cpp:382] norm1 -> norm1
  1073. I0802 16:51:32.013787 2858 net.cpp:124] Setting up norm1
  1074. I0802 16:51:32.013794 2858 net.cpp:131] Top shape: 50 64 227 227 (164892800)
  1075. I0802 16:51:32.013797 2858 net.cpp:139] Memory required for data: 3328774000
  1076. I0802 16:51:32.013800 2858 layer_factory.hpp:77] Creating layer pool1
  1077. I0802 16:51:32.013806 2858 net.cpp:86] Creating Layer pool1
  1078. I0802 16:51:32.013809 2858 net.cpp:408] pool1 <- norm1
  1079. I0802 16:51:32.013813 2858 net.cpp:382] pool1 -> pool1
  1080. I0802 16:51:32.013840 2858 net.cpp:124] Setting up pool1
  1081. I0802 16:51:32.013845 2858 net.cpp:131] Top shape: 50 64 113 113 (40860800)
  1082. I0802 16:51:32.013849 2858 net.cpp:139] Memory required for data: 3492217200
  1083. I0802 16:51:32.013851 2858 layer_factory.hpp:77] Creating layer conv2
  1084. I0802 16:51:32.013859 2858 net.cpp:86] Creating Layer conv2
  1085. I0802 16:51:32.013862 2858 net.cpp:408] conv2 <- pool1
  1086. I0802 16:51:32.013867 2858 net.cpp:382] conv2 -> conv2
  1087. I0802 16:51:32.017405 2858 net.cpp:124] Setting up conv2
  1088. I0802 16:51:32.017417 2858 net.cpp:131] Top shape: 50 256 113 113 (163443200)
  1089. I0802 16:51:32.017421 2858 net.cpp:139] Memory required for data: 4145990000
  1090. I0802 16:51:32.017431 2858 layer_factory.hpp:77] Creating layer relu2
  1091. I0802 16:51:32.017436 2858 net.cpp:86] Creating Layer relu2
  1092. I0802 16:51:32.017439 2858 net.cpp:408] relu2 <- conv2
  1093. I0802 16:51:32.017444 2858 net.cpp:369] relu2 -> conv2 (in-place)
  1094. I0802 16:51:32.017783 2858 net.cpp:124] Setting up relu2
  1095. I0802 16:51:32.017791 2858 net.cpp:131] Top shape: 50 256 113 113 (163443200)
  1096. I0802 16:51:32.017794 2858 net.cpp:139] Memory required for data: 4799762800
  1097. I0802 16:51:32.017798 2858 layer_factory.hpp:77] Creating layer norm2
  1098. I0802 16:51:32.017803 2858 net.cpp:86] Creating Layer norm2
  1099. I0802 16:51:32.017807 2858 net.cpp:408] norm2 <- conv2
  1100. I0802 16:51:32.017810 2858 net.cpp:382] norm2 -> norm2
  1101. I0802 16:51:32.017953 2858 net.cpp:124] Setting up norm2
  1102. I0802 16:51:32.017959 2858 net.cpp:131] Top shape: 50 256 113 113 (163443200)
  1103. I0802 16:51:32.017961 2858 net.cpp:139] Memory required for data: 5453535600
  1104. I0802 16:51:32.017964 2858 layer_factory.hpp:77] Creating layer pool2
  1105. I0802 16:51:32.017969 2858 net.cpp:86] Creating Layer pool2
  1106. I0802 16:51:32.017999 2858 net.cpp:408] pool2 <- norm2
  1107. I0802 16:51:32.018003 2858 net.cpp:382] pool2 -> pool2
  1108. I0802 16:51:32.018060 2858 net.cpp:124] Setting up pool2
  1109. I0802 16:51:32.018065 2858 net.cpp:131] Top shape: 50 256 56 56 (40140800)
  1110. I0802 16:51:32.018067 2858 net.cpp:139] Memory required for data: 5614098800
  1111. I0802 16:51:32.018081 2858 layer_factory.hpp:77] Creating layer conv3
  1112. I0802 16:51:32.018087 2858 net.cpp:86] Creating Layer conv3
  1113. I0802 16:51:32.018105 2858 net.cpp:408] conv3 <- pool2
  1114. I0802 16:51:32.018107 2858 net.cpp:382] conv3 -> conv3
  1115. I0802 16:51:32.026690 2858 net.cpp:124] Setting up conv3
  1116. I0802 16:51:32.026705 2858 net.cpp:131] Top shape: 50 384 56 56 (60211200)
  1117. I0802 16:51:32.026707 2858 net.cpp:139] Memory required for data: 5854943600
  1118. I0802 16:51:32.026727 2858 layer_factory.hpp:77] Creating layer relu3
  1119. I0802 16:51:32.026748 2858 net.cpp:86] Creating Layer relu3
  1120. I0802 16:51:32.026751 2858 net.cpp:408] relu3 <- conv3
  1121. I0802 16:51:32.026772 2858 net.cpp:369] relu3 -> conv3 (in-place)
  1122. I0802 16:51:32.026926 2858 net.cpp:124] Setting up relu3
  1123. I0802 16:51:32.026932 2858 net.cpp:131] Top shape: 50 384 56 56 (60211200)
  1124. I0802 16:51:32.026933 2858 net.cpp:139] Memory required for data: 6095788400
  1125. I0802 16:51:32.026937 2858 layer_factory.hpp:77] Creating layer conv4
  1126. I0802 16:51:32.026958 2858 net.cpp:86] Creating Layer conv4
  1127. I0802 16:51:32.026962 2858 net.cpp:408] conv4 <- conv3
  1128. I0802 16:51:32.026965 2858 net.cpp:382] conv4 -> conv4
  1129. I0802 16:51:32.034037 2858 net.cpp:124] Setting up conv4
  1130. I0802 16:51:32.034052 2858 net.cpp:131] Top shape: 50 384 56 56 (60211200)
  1131. I0802 16:51:32.034054 2858 net.cpp:139] Memory required for data: 6336633200
  1132. I0802 16:51:32.034060 2858 layer_factory.hpp:77] Creating layer relu4
  1133. I0802 16:51:32.034080 2858 net.cpp:86] Creating Layer relu4
  1134. I0802 16:51:32.034085 2858 net.cpp:408] relu4 <- conv4
  1135. I0802 16:51:32.034106 2858 net.cpp:369] relu4 -> conv4 (in-place)
  1136. I0802 16:51:32.034279 2858 net.cpp:124] Setting up relu4
  1137. I0802 16:51:32.034286 2858 net.cpp:131] Top shape: 50 384 56 56 (60211200)
  1138. I0802 16:51:32.034287 2858 net.cpp:139] Memory required for data: 6577478000
  1139. I0802 16:51:32.034289 2858 layer_factory.hpp:77] Creating layer conv5
  1140. I0802 16:51:32.034312 2858 net.cpp:86] Creating Layer conv5
  1141. I0802 16:51:32.034314 2858 net.cpp:408] conv5 <- conv4
  1142. I0802 16:51:32.034318 2858 net.cpp:382] conv5 -> conv5
  1143. I0802 16:51:32.040576 2858 net.cpp:124] Setting up conv5
  1144. I0802 16:51:32.040592 2858 net.cpp:131] Top shape: 50 256 56 56 (40140800)
  1145. I0802 16:51:32.040611 2858 net.cpp:139] Memory required for data: 6738041200
  1146. I0802 16:51:32.040618 2858 layer_factory.hpp:77] Creating layer relu5
  1147. I0802 16:51:32.040626 2858 net.cpp:86] Creating Layer relu5
  1148. I0802 16:51:32.040629 2858 net.cpp:408] relu5 <- conv5
  1149. I0802 16:51:32.040635 2858 net.cpp:369] relu5 -> conv5 (in-place)
  1150. I0802 16:51:32.040817 2858 net.cpp:124] Setting up relu5
  1151. I0802 16:51:32.040823 2858 net.cpp:131] Top shape: 50 256 56 56 (40140800)
  1152. I0802 16:51:32.040825 2858 net.cpp:139] Memory required for data: 6898604400
  1153. I0802 16:51:32.040828 2858 layer_factory.hpp:77] Creating layer pool5
  1154. I0802 16:51:32.040848 2858 net.cpp:86] Creating Layer pool5
  1155. I0802 16:51:32.040849 2858 net.cpp:408] pool5 <- conv5
  1156. I0802 16:51:32.040853 2858 net.cpp:382] pool5 -> pool5
  1157. I0802 16:51:32.040920 2858 net.cpp:124] Setting up pool5
  1158. I0802 16:51:32.040925 2858 net.cpp:131] Top shape: 50 256 28 28 (10035200)
  1159. I0802 16:51:32.040927 2858 net.cpp:139] Memory required for data: 6938745200
  1160. I0802 16:51:32.040930 2858 layer_factory.hpp:77] Creating layer fc6
  1161. I0802 16:51:32.040936 2858 net.cpp:86] Creating Layer fc6
  1162. I0802 16:51:32.040938 2858 net.cpp:408] fc6 <- pool5
  1163. I0802 16:51:32.040942 2858 net.cpp:382] fc6 -> fc6
  1164. I0802 16:52:04.265542 2858 net.cpp:124] Setting up fc6
  1165. I0802 16:52:07.463881 2858 net.cpp:131] Top shape: 50 4096 (204800)
  1166. I0802 16:52:07.463922 2858 net.cpp:139] Memory required for data: 6939564400
  1167. I0802 16:52:08.317765 2858 layer_factory.hpp:77] Creating layer relu6
  1168. I0802 16:52:08.367188 2858 net.cpp:86] Creating Layer relu6
  1169. I0802 16:52:08.424886 2858 net.cpp:408] relu6 <- fc6
  1170. I0802 16:52:08.596489 2858 net.cpp:369] relu6 -> fc6 (in-place)
  1171. I0802 16:52:16.592660 2858 net.cpp:124] Setting up relu6
  1172. I0802 16:52:16.592710 2858 net.cpp:131] Top shape: 50 4096 (204800)
  1173. I0802 16:52:16.592722 2858 net.cpp:139] Memory required for data: 6940383600
  1174. I0802 16:52:16.607672 2858 layer_factory.hpp:77] Creating layer drop6
  1175. I0802 16:52:16.630497 2858 net.cpp:86] Creating Layer drop6
  1176. I0802 16:52:16.630540 2858 net.cpp:408] drop6 <- fc6
  1177. I0802 16:52:16.630563 2858 net.cpp:369] drop6 -> fc6 (in-place)
  1178. I0802 16:52:16.676877 2858 net.cpp:124] Setting up drop6
  1179. I0802 16:52:16.676910 2858 net.cpp:131] Top shape: 50 4096 (204800)
  1180. I0802 16:52:16.676918 2858 net.cpp:139] Memory required for data: 6941202800
  1181. I0802 16:52:16.676931 2858 layer_factory.hpp:77] Creating layer fc7
  1182. I0802 16:52:16.682255 2858 net.cpp:86] Creating Layer fc7
  1183. I0802 16:52:16.682273 2858 net.cpp:408] fc7 <- fc6
  1184. I0802 16:52:16.682291 2858 net.cpp:382] fc7 -> fc7
  1185. I0802 16:52:17.076421 2858 net.cpp:124] Setting up fc7
  1186. I0802 16:52:17.076830 2858 net.cpp:131] Top shape: 50 4096 (204800)
  1187. I0802 16:52:17.076838 2858 net.cpp:139] Memory required for data: 6942022000
  1188. I0802 16:52:17.076848 2858 layer_factory.hpp:77] Creating layer relu7
  1189. I0802 16:52:17.076869 2858 net.cpp:86] Creating Layer relu7
  1190. I0802 16:52:17.076887 2858 net.cpp:408] relu7 <- fc7
  1191. I0802 16:52:17.076892 2858 net.cpp:369] relu7 -> fc7 (in-place)
  1192. I0802 16:52:17.127794 2858 net.cpp:124] Setting up relu7
  1193. I0802 16:52:17.127849 2858 net.cpp:131] Top shape: 50 4096 (204800)
  1194. I0802 16:52:17.127859 2858 net.cpp:139] Memory required for data: 6942841200
  1195. I0802 16:52:17.127871 2858 layer_factory.hpp:77] Creating layer drop7
  1196. I0802 16:52:17.127898 2858 net.cpp:86] Creating Layer drop7
  1197. I0802 16:52:17.127913 2858 net.cpp:408] drop7 <- fc7
  1198. I0802 16:52:17.127929 2858 net.cpp:369] drop7 -> fc7 (in-place)
  1199. I0802 16:52:17.128054 2858 net.cpp:124] Setting up drop7
  1200. I0802 16:52:17.128072 2858 net.cpp:131] Top shape: 50 4096 (204800)
  1201. I0802 16:52:17.128082 2858 net.cpp:139] Memory required for data: 6943660400
  1202. I0802 16:52:17.128088 2858 layer_factory.hpp:77] Creating layer fc8
  1203. I0802 16:52:17.128105 2858 net.cpp:86] Creating Layer fc8
  1204. I0802 16:52:17.128116 2858 net.cpp:408] fc8 <- fc7
  1205. I0802 16:52:17.128137 2858 net.cpp:382] fc8 -> fc8
  1206. I0802 16:52:17.330720 2858 net.cpp:124] Setting up fc8
  1207. I0802 16:52:17.330772 2858 net.cpp:131] Top shape: 50 1000 (50000)
  1208. I0802 16:52:17.330781 2858 net.cpp:139] Memory required for data: 6943860400
  1209. I0802 16:52:17.330806 2858 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
  1210. I0802 16:52:17.420990 2858 net.cpp:86] Creating Layer fc8_fc8_0_split
  1211. I0802 16:52:17.421036 2858 net.cpp:408] fc8_fc8_0_split <- fc8
  1212. I0802 16:52:17.421066 2858 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_0
  1213. I0802 16:52:17.421098 2858 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_1
  1214. I0802 16:52:17.433820 2858 net.cpp:124] Setting up fc8_fc8_0_split
  1215. I0802 16:52:17.433867 2858 net.cpp:131] Top shape: 50 1000 (50000)
  1216. I0802 16:52:17.433878 2858 net.cpp:131] Top shape: 50 1000 (50000)
  1217. I0802 16:52:17.433887 2858 net.cpp:139] Memory required for data: 6944260400
  1218. I0802 16:52:17.433907 2858 layer_factory.hpp:77] Creating layer accuracy
  1219. I0802 16:52:17.490643 2858 net.cpp:86] Creating Layer accuracy
  1220. I0802 16:52:17.490690 2858 net.cpp:408] accuracy <- fc8_fc8_0_split_0
  1221. I0802 16:52:17.490710 2858 net.cpp:408] accuracy <- label_data_1_split_0
  1222. I0802 16:52:17.490727 2858 net.cpp:382] accuracy -> accuracy
  1223. I0802 16:52:17.525151 2858 net.cpp:124] Setting up accuracy
  1224. I0802 16:52:17.525197 2858 net.cpp:131] Top shape: (1)
  1225. I0802 16:52:17.525207 2858 net.cpp:139] Memory required for data: 6944260404
  1226. I0802 16:52:17.525218 2858 layer_factory.hpp:77] Creating layer loss
  1227. I0802 16:52:17.525286 2858 net.cpp:86] Creating Layer loss
  1228. I0802 16:52:17.525297 2858 net.cpp:408] loss <- fc8_fc8_0_split_1
  1229. I0802 16:52:17.525315 2858 net.cpp:408] loss <- label_data_1_split_1
  1230. I0802 16:52:17.629770 2858 net.cpp:382] loss -> loss
  1231. I0802 16:52:17.822856 2858 layer_factory.hpp:77] Creating layer loss
  1232. I0802 16:52:18.057018 2858 net.cpp:124] Setting up loss
  1233. I0802 16:52:18.057070 2858 net.cpp:131] Top shape: (1)
  1234. I0802 16:52:18.057077 2858 net.cpp:134] with loss weight 1
  1235. I0802 16:52:18.161309 2858 net.cpp:139] Memory required for data: 6944260408
  1236. I0802 16:52:18.161334 2858 net.cpp:200] loss needs backward computation.
  1237. I0802 16:52:18.161356 2858 net.cpp:202] accuracy does not need backward computation.
  1238. I0802 16:52:18.161370 2858 net.cpp:200] fc8_fc8_0_split needs backward computation.
  1239. I0802 16:52:18.161378 2858 net.cpp:200] fc8 needs backward computation.
  1240. I0802 16:52:18.161389 2858 net.cpp:200] drop7 needs backward computation.
  1241. I0802 16:52:18.161402 2858 net.cpp:200] relu7 needs backward computation.
  1242. I0802 16:52:18.161413 2858 net.cpp:200] fc7 needs backward computation.
  1243. I0802 16:52:18.161423 2858 net.cpp:200] drop6 needs backward computation.
  1244. I0802 16:52:18.161433 2858 net.cpp:200] relu6 needs backward computation.
  1245. I0802 16:52:18.161445 2858 net.cpp:200] fc6 needs backward computation.
  1246. I0802 16:52:18.161454 2858 net.cpp:200] pool5 needs backward computation.
  1247. I0802 16:52:18.161464 2858 net.cpp:200] relu5 needs backward computation.
  1248. I0802 16:52:18.161475 2858 net.cpp:200] conv5 needs backward computation.
  1249. I0802 16:52:18.172785 2858 net.cpp:200] relu4 needs backward computation.
  1250. I0802 16:52:18.172827 2858 net.cpp:200] conv4 needs backward computation.
  1251. I0802 16:52:18.214609 2858 net.cpp:200] relu3 needs backward computation.
  1252. I0802 16:52:18.219866 2858 net.cpp:200] conv3 needs backward computation.
  1253. I0802 16:52:18.219916 2858 net.cpp:200] pool2 needs backward computation.
  1254. I0802 16:52:18.219926 2858 net.cpp:200] norm2 needs backward computation.
  1255. I0802 16:52:18.219935 2858 net.cpp:200] relu2 needs backward computation.
  1256. I0802 16:52:18.219943 2858 net.cpp:200] conv2 needs backward computation.
  1257. I0802 16:52:18.219959 2858 net.cpp:200] pool1 needs backward computation.
  1258. I0802 16:52:18.229528 2858 net.cpp:200] norm1 needs backward computation.
  1259. I0802 16:52:18.229575 2858 net.cpp:200] relu1 needs backward computation.
  1260. I0802 16:52:18.229585 2858 net.cpp:200] scale1 needs backward computation.
  1261. I0802 16:52:18.229595 2858 net.cpp:200] bn1 needs backward computation.
  1262. I0802 16:52:18.229602 2858 net.cpp:200] conv1 needs backward computation.
  1263. I0802 16:52:18.229616 2858 net.cpp:202] label_data_1_split does not need backward computation.
  1264. I0802 16:52:18.229629 2858 net.cpp:202] data does not need backward computation.
  1265. I0802 16:52:18.229641 2858 net.cpp:244] This network produces output accuracy
  1266. I0802 16:52:18.229655 2858 net.cpp:244] This network produces output loss
  1267. I0802 16:52:18.229758 2858 net.cpp:257] Network initialization done.
  1268. I0802 16:52:18.840412 2858 solver.cpp:56] Solver scaffolding done.
  1269. I0802 16:52:18.998049 2858 caffe.cpp:248] Starting Optimization
  1270. I0802 16:52:18.998095 2858 solver.cpp:273] Solving AlexNet
  1271. I0802 16:52:18.998103 2858 solver.cpp:274] Learning Rate Policy: step
  1272. I0802 16:52:19.448653 2858 solver.cpp:331] Iteration 0, Testing net (#0)
  1273. F0802 16:52:22.157035 2858 syncedmem.cpp:71] Check failed: error == cudaSuccess (2 vs. 0) out of memory
  1274. *** Check failure stack trace: ***
  1275. @ 0x7f856777c5cd google::LogMessage::Fail()
  1276. @ 0x7f856777e433 google::LogMessage::SendToLog()
  1277. @ 0x7f856777c15b google::LogMessage::Flush()
  1278. @ 0x7f856777ee1e google::LogMessageFatal::~LogMessageFatal()
  1279. @ 0x7f8567db3ad8 caffe::SyncedMemory::mutable_gpu_data()
  1280. @ 0x7f8567f280f2 caffe::Blob<>::mutable_gpu_data()
  1281. @ 0x7f8567f5be48 caffe::CuDNNConvolutionLayer<>::Forward_gpu()
  1282. @ 0x7f8567dc28b1 caffe::Net<>::ForwardFromTo()
  1283. @ 0x7f8567dc29b7 caffe::Net<>::Forward()
  1284. @ 0x7f8567f1acb2 caffe::Solver<>::Test()
  1285. @ 0x7f8567f1b6ce caffe::Solver<>::TestAll()
  1286. @ 0x7f8567f1ec27 caffe::Solver<>::Step()
  1287. @ 0x7f8567f1eeea caffe::Solver<>::Solve()
  1288. @ 0x40aeb4 train()
  1289. @ 0x4075a8 main
  1290. @ 0x7f8565f13830 __libc_start_main
  1291. @ 0x407e79 _start
  1292. @ (nil) (unknown)
  1293. Aborted (core dumped)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement