Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- sina@sina-Z170X-UD3:~/code/caffe$ ./build/tools/caffe train --solver=examples/alexnetfinetune/solver_sina.prototxt
- I0805 02:17:47.682703 3354 caffe.cpp:218] Using GPUs 0
- I0805 02:17:47.721066 3354 caffe.cpp:223] GPU 0: GeForce GTX 1070
- I0805 02:17:47.932503 3354 solver.cpp:44] Initializing solver from parameters:
- test_iter: 54
- test_interval: 610
- base_lr: 0.001
- display: 20
- max_iter: 5000
- lr_policy: "step"
- gamma: 0.1
- momentum: 0.9
- weight_decay: 0.0005
- stepsize: 100000
- snapshot: 4999
- snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_sinatrain"
- solver_mode: GPU
- device_id: 0
- net: "examples/alexnetfinetune/alexnetsade-bn.prototxt"
- train_state {
- level: 0
- stage: ""
- }
- type: "SGD"
- I0805 02:17:47.932651 3354 solver.cpp:87] Creating training net from net file: examples/alexnetfinetune/alexnetsade-bn.prototxt
- I0805 02:17:47.932893 3354 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: examples/alexnetfinetune/alexnetsade-bn.prototxt
- I0805 02:17:47.932900 3354 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
- I0805 02:17:47.932983 3354 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
- I0805 02:17:47.932994 3354 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
- I0805 02:17:47.933147 3354 net.cpp:53] Initializing net from parameters:
- name: "AlexNet"
- state {
- phase: TRAIN
- level: 0
- stage: ""
- }
- layer {
- name: "data"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TRAIN
- }
- data_param {
- source: "examples/Mydataset_train_lmdb"
- batch_size: 256
- backend: LMDB
- }
- }
- layer {
- name: "conv1"
- type: "Convolution"
- bottom: "data"
- top: "conv1"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 96
- kernel_size: 11
- stride: 4
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "relu1"
- type: "ReLU"
- bottom: "conv1"
- top: "conv1"
- }
- layer {
- name: "norm1"
- type: "LRN"
- bottom: "conv1"
- top: "norm1"
- lrn_param {
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- }
- layer {
- name: "pool1"
- type: "Pooling"
- bottom: "norm1"
- top: "pool1"
- pooling_param {
- pool: MAX
- kernel_size: 3
- stride: 2
- }
- }
- layer {
- name: "conv2"
- type: "Convolution"
- bottom: "pool1"
- top: "conv2"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 256
- pad: 2
- kernel_size: 5
- group: 2
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "bn1"
- type: "BatchNorm"
- bottom: "conv2"
- top: "conv2"
- param {
- lr_mult: 0
- decay_mult: 0
- }
- param {
- lr_mult: 0
- decay_mult: 0
- }
- param {
- lr_mult: 0
- decay_mult: 0
- }
- }
- layer {
- name: "scale1"
- type: "Scale"
- bottom: "conv2"
- top: "conv2"
- scale_param {
- bias_term: true
- }
- }
- layer {
- name: "relu2"
- type: "ReLU"
- bottom: "conv2"
- top: "conv2"
- }
- layer {
- name: "norm2"
- type: "LRN"
- bottom: "conv2"
- top: "norm2"
- lrn_param {
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- }
- layer {
- name: "pool2"
- type: "Pooling"
- bottom: "norm2"
- top: "pool2"
- pooling_param {
- pool: MAX
- kernel_size: 3
- stride: 2
- }
- }
- layer {
- name: "conv3"
- type: "Convolution"
- bottom: "pool2"
- top: "conv3"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 384
- pad: 1
- kernel_size: 3
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "relu3"
- type: "ReLU"
- bottom: "conv3"
- top: "conv3"
- }
- layer {
- name: "conv4"
- type: "Convolution"
- bottom: "conv3"
- top: "conv4"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 384
- pad: 1
- kernel_size: 3
- group: 2
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu4"
- type: "ReLU"
- bottom: "conv4"
- top: "conv4"
- }
- layer {
- name: "conv5"
- type: "Convolution"
- bottom: "conv4"
- top: "conv5"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 256
- pad: 1
- kernel_size: 3
- group: 2
- weight_filler {
- type: "xavier"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu5"
- type: "ReLU"
- bottom: "conv5"
- top: "conv5"
- }
- layer {
- name: "pool5"
- type: "Pooling"
- bottom: "conv5"
- top: "pool5"
- pooling_param {
- pool: MAX
- kernel_size: 3
- stride: 2
- }
- }
- layer {
- name: "fc6"
- type: "InnerProduct"
- bottom: "pool5"
- top: "fc6"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 4096
- weight_filler {
- type: "xavier"
- std: 0.005
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu6"
- type: "ReLU"
- bottom: "fc6"
- top: "fc6"
- }
- layer {
- name: "drop6"
- type: "Dropout"
- bottom: "fc6"
- top: "fc6"
- dropout_param {
- dropout_ratio: 0.5
- }
- }
- layer {
- name: "fc7"
- type: "InnerProduct"
- bottom: "fc6"
- top: "fc7"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 4096
- weight_filler {
- type: "xavier"
- std: 0.005
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu7"
- type: "ReLU"
- bottom: "fc7"
- top: "fc7"
- }
- layer {
- name: "drop7"
- type: "Dropout"
- bottom: "fc7"
- top: "fc7"
- dropout_param {
- dropout_ratio: 0.5
- }
- }
- layer {
- name: "fc8"
- type: "InnerProduct"
- bottom: "fc7"
- top: "fc8"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 4
- weight_filler {
- type: "xavier"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "loss"
- type: "SoftmaxWithLoss"
- bottom: "fc8"
- bottom: "label"
- top: "loss"
- }
- I0805 02:17:47.933511 3354 layer_factory.hpp:77] Creating layer data
- I0805 02:17:47.933637 3354 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_train_lmdb
- I0805 02:17:47.933686 3354 net.cpp:86] Creating Layer data
- I0805 02:17:47.933693 3354 net.cpp:382] data -> data
- I0805 02:17:47.933733 3354 net.cpp:382] data -> label
- I0805 02:17:47.934499 3354 data_layer.cpp:45] output data size: 256,3,227,227
- I0805 02:17:48.112761 3354 net.cpp:124] Setting up data
- I0805 02:17:48.112792 3354 net.cpp:131] Top shape: 256 3 227 227 (39574272)
- I0805 02:17:48.112810 3354 net.cpp:131] Top shape: 256 (256)
- I0805 02:17:48.112812 3354 net.cpp:139] Memory required for data: 158298112
- I0805 02:17:48.112834 3354 layer_factory.hpp:77] Creating layer conv1
- I0805 02:17:48.112849 3354 net.cpp:86] Creating Layer conv1
- I0805 02:17:48.112855 3354 net.cpp:408] conv1 <- data
- I0805 02:17:48.112864 3354 net.cpp:382] conv1 -> conv1
- I0805 02:17:48.310364 3354 net.cpp:124] Setting up conv1
- I0805 02:17:48.310398 3354 net.cpp:131] Top shape: 256 96 55 55 (74342400)
- I0805 02:17:48.310401 3354 net.cpp:139] Memory required for data: 455667712
- I0805 02:17:48.310437 3354 layer_factory.hpp:77] Creating layer relu1
- I0805 02:17:48.310448 3354 net.cpp:86] Creating Layer relu1
- I0805 02:17:48.310451 3354 net.cpp:408] relu1 <- conv1
- I0805 02:17:48.310456 3354 net.cpp:369] relu1 -> conv1 (in-place)
- I0805 02:17:48.310626 3354 net.cpp:124] Setting up relu1
- I0805 02:17:48.310631 3354 net.cpp:131] Top shape: 256 96 55 55 (74342400)
- I0805 02:17:48.310648 3354 net.cpp:139] Memory required for data: 753037312
- I0805 02:17:48.310650 3354 layer_factory.hpp:77] Creating layer norm1
- I0805 02:17:48.310673 3354 net.cpp:86] Creating Layer norm1
- I0805 02:17:48.310676 3354 net.cpp:408] norm1 <- conv1
- I0805 02:17:48.310680 3354 net.cpp:382] norm1 -> norm1
- I0805 02:17:48.311266 3354 net.cpp:124] Setting up norm1
- I0805 02:17:48.311275 3354 net.cpp:131] Top shape: 256 96 55 55 (74342400)
- I0805 02:17:48.311290 3354 net.cpp:139] Memory required for data: 1050406912
- I0805 02:17:48.311293 3354 layer_factory.hpp:77] Creating layer pool1
- I0805 02:17:48.311314 3354 net.cpp:86] Creating Layer pool1
- I0805 02:17:48.311317 3354 net.cpp:408] pool1 <- norm1
- I0805 02:17:48.311322 3354 net.cpp:382] pool1 -> pool1
- I0805 02:17:48.311357 3354 net.cpp:124] Setting up pool1
- I0805 02:17:48.311375 3354 net.cpp:131] Top shape: 256 96 27 27 (17915904)
- I0805 02:17:48.311378 3354 net.cpp:139] Memory required for data: 1122070528
- I0805 02:17:48.311394 3354 layer_factory.hpp:77] Creating layer conv2
- I0805 02:17:48.311403 3354 net.cpp:86] Creating Layer conv2
- I0805 02:17:48.311406 3354 net.cpp:408] conv2 <- pool1
- I0805 02:17:48.311410 3354 net.cpp:382] conv2 -> conv2
- I0805 02:17:48.316013 3354 net.cpp:124] Setting up conv2
- I0805 02:17:48.316030 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
- I0805 02:17:48.316047 3354 net.cpp:139] Memory required for data: 1313173504
- I0805 02:17:48.316058 3354 layer_factory.hpp:77] Creating layer bn1
- I0805 02:17:48.316066 3354 net.cpp:86] Creating Layer bn1
- I0805 02:17:48.316071 3354 net.cpp:408] bn1 <- conv2
- I0805 02:17:48.316076 3354 net.cpp:369] bn1 -> conv2 (in-place)
- I0805 02:17:48.316227 3354 net.cpp:124] Setting up bn1
- I0805 02:17:48.316232 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
- I0805 02:17:48.316249 3354 net.cpp:139] Memory required for data: 1504276480
- I0805 02:17:48.316256 3354 layer_factory.hpp:77] Creating layer scale1
- I0805 02:17:48.316262 3354 net.cpp:86] Creating Layer scale1
- I0805 02:17:48.316265 3354 net.cpp:408] scale1 <- conv2
- I0805 02:17:48.316270 3354 net.cpp:369] scale1 -> conv2 (in-place)
- I0805 02:17:48.316314 3354 layer_factory.hpp:77] Creating layer scale1
- I0805 02:17:48.316419 3354 net.cpp:124] Setting up scale1
- I0805 02:17:48.316424 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
- I0805 02:17:48.316442 3354 net.cpp:139] Memory required for data: 1695379456
- I0805 02:17:48.316448 3354 layer_factory.hpp:77] Creating layer relu2
- I0805 02:17:48.316454 3354 net.cpp:86] Creating Layer relu2
- I0805 02:17:48.316457 3354 net.cpp:408] relu2 <- conv2
- I0805 02:17:48.316462 3354 net.cpp:369] relu2 -> conv2 (in-place)
- I0805 02:17:48.318275 3354 net.cpp:124] Setting up relu2
- I0805 02:17:48.318284 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
- I0805 02:17:48.318301 3354 net.cpp:139] Memory required for data: 1886482432
- I0805 02:17:48.318305 3354 layer_factory.hpp:77] Creating layer norm2
- I0805 02:17:48.318310 3354 net.cpp:86] Creating Layer norm2
- I0805 02:17:48.318313 3354 net.cpp:408] norm2 <- conv2
- I0805 02:17:48.318318 3354 net.cpp:382] norm2 -> norm2
- I0805 02:17:48.318470 3354 net.cpp:124] Setting up norm2
- I0805 02:17:48.318476 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
- I0805 02:17:48.318493 3354 net.cpp:139] Memory required for data: 2077585408
- I0805 02:17:48.318496 3354 layer_factory.hpp:77] Creating layer pool2
- I0805 02:17:48.318501 3354 net.cpp:86] Creating Layer pool2
- I0805 02:17:48.318506 3354 net.cpp:408] pool2 <- norm2
- I0805 02:17:48.318509 3354 net.cpp:382] pool2 -> pool2
- I0805 02:17:48.318549 3354 net.cpp:124] Setting up pool2
- I0805 02:17:48.318553 3354 net.cpp:131] Top shape: 256 256 13 13 (11075584)
- I0805 02:17:48.318572 3354 net.cpp:139] Memory required for data: 2121887744
- I0805 02:17:48.318573 3354 layer_factory.hpp:77] Creating layer conv3
- I0805 02:17:48.318581 3354 net.cpp:86] Creating Layer conv3
- I0805 02:17:48.318584 3354 net.cpp:408] conv3 <- pool2
- I0805 02:17:48.318590 3354 net.cpp:382] conv3 -> conv3
- I0805 02:17:48.342455 3354 net.cpp:124] Setting up conv3
- I0805 02:17:48.342473 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
- I0805 02:17:48.342475 3354 net.cpp:139] Memory required for data: 2188341248
- I0805 02:17:48.342497 3354 layer_factory.hpp:77] Creating layer relu3
- I0805 02:17:48.342519 3354 net.cpp:86] Creating Layer relu3
- I0805 02:17:48.342550 3354 net.cpp:408] relu3 <- conv3
- I0805 02:17:48.342571 3354 net.cpp:369] relu3 -> conv3 (in-place)
- I0805 02:17:48.342731 3354 net.cpp:124] Setting up relu3
- I0805 02:17:48.342737 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
- I0805 02:17:48.342739 3354 net.cpp:139] Memory required for data: 2254794752
- I0805 02:17:48.342741 3354 layer_factory.hpp:77] Creating layer conv4
- I0805 02:17:48.342764 3354 net.cpp:86] Creating Layer conv4
- I0805 02:17:48.342767 3354 net.cpp:408] conv4 <- conv3
- I0805 02:17:48.342787 3354 net.cpp:382] conv4 -> conv4
- I0805 02:17:48.350215 3354 net.cpp:124] Setting up conv4
- I0805 02:17:48.350246 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
- I0805 02:17:48.350248 3354 net.cpp:139] Memory required for data: 2321248256
- I0805 02:17:48.350270 3354 layer_factory.hpp:77] Creating layer relu4
- I0805 02:17:48.350281 3354 net.cpp:86] Creating Layer relu4
- I0805 02:17:48.350286 3354 net.cpp:408] relu4 <- conv4
- I0805 02:17:48.350291 3354 net.cpp:369] relu4 -> conv4 (in-place)
- I0805 02:17:48.350456 3354 net.cpp:124] Setting up relu4
- I0805 02:17:48.350462 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
- I0805 02:17:48.350466 3354 net.cpp:139] Memory required for data: 2387701760
- I0805 02:17:48.350481 3354 layer_factory.hpp:77] Creating layer conv5
- I0805 02:17:48.350488 3354 net.cpp:86] Creating Layer conv5
- I0805 02:17:48.350507 3354 net.cpp:408] conv5 <- conv4
- I0805 02:17:48.350512 3354 net.cpp:382] conv5 -> conv5
- I0805 02:17:48.355535 3354 net.cpp:124] Setting up conv5
- I0805 02:17:48.355564 3354 net.cpp:131] Top shape: 256 256 13 13 (11075584)
- I0805 02:17:48.355567 3354 net.cpp:139] Memory required for data: 2432004096
- I0805 02:17:48.355590 3354 layer_factory.hpp:77] Creating layer relu5
- I0805 02:17:48.355604 3354 net.cpp:86] Creating Layer relu5
- I0805 02:17:48.355607 3354 net.cpp:408] relu5 <- conv5
- I0805 02:17:48.355624 3354 net.cpp:369] relu5 -> conv5 (in-place)
- I0805 02:17:48.355823 3354 net.cpp:124] Setting up relu5
- I0805 02:17:48.355829 3354 net.cpp:131] Top shape: 256 256 13 13 (11075584)
- I0805 02:17:48.355844 3354 net.cpp:139] Memory required for data: 2476306432
- I0805 02:17:48.355846 3354 layer_factory.hpp:77] Creating layer pool5
- I0805 02:17:48.355867 3354 net.cpp:86] Creating Layer pool5
- I0805 02:17:48.355870 3354 net.cpp:408] pool5 <- conv5
- I0805 02:17:48.355876 3354 net.cpp:382] pool5 -> pool5
- I0805 02:17:48.355913 3354 net.cpp:124] Setting up pool5
- I0805 02:17:48.355918 3354 net.cpp:131] Top shape: 256 256 6 6 (2359296)
- I0805 02:17:48.355921 3354 net.cpp:139] Memory required for data: 2485743616
- I0805 02:17:48.355922 3354 layer_factory.hpp:77] Creating layer fc6
- I0805 02:17:48.355927 3354 net.cpp:86] Creating Layer fc6
- I0805 02:17:48.355929 3354 net.cpp:408] fc6 <- pool5
- I0805 02:17:48.355934 3354 net.cpp:382] fc6 -> fc6
- I0805 02:17:48.538027 3354 net.cpp:124] Setting up fc6
- I0805 02:17:48.538043 3354 net.cpp:131] Top shape: 256 4096 (1048576)
- I0805 02:17:48.538045 3354 net.cpp:139] Memory required for data: 2489937920
- I0805 02:17:48.538069 3354 layer_factory.hpp:77] Creating layer relu6
- I0805 02:17:48.538091 3354 net.cpp:86] Creating Layer relu6
- I0805 02:17:48.538095 3354 net.cpp:408] relu6 <- fc6
- I0805 02:17:48.538101 3354 net.cpp:369] relu6 -> fc6 (in-place)
- I0805 02:17:48.538276 3354 net.cpp:124] Setting up relu6
- I0805 02:17:48.538282 3354 net.cpp:131] Top shape: 256 4096 (1048576)
- I0805 02:17:48.538285 3354 net.cpp:139] Memory required for data: 2494132224
- I0805 02:17:48.538287 3354 layer_factory.hpp:77] Creating layer drop6
- I0805 02:17:48.538292 3354 net.cpp:86] Creating Layer drop6
- I0805 02:17:48.538308 3354 net.cpp:408] drop6 <- fc6
- I0805 02:17:48.538311 3354 net.cpp:369] drop6 -> fc6 (in-place)
- I0805 02:17:48.538362 3354 net.cpp:124] Setting up drop6
- I0805 02:17:48.538378 3354 net.cpp:131] Top shape: 256 4096 (1048576)
- I0805 02:17:48.538380 3354 net.cpp:139] Memory required for data: 2498326528
- I0805 02:17:48.538383 3354 layer_factory.hpp:77] Creating layer fc7
- I0805 02:17:48.538429 3354 net.cpp:86] Creating Layer fc7
- I0805 02:17:48.538444 3354 net.cpp:408] fc7 <- fc6
- I0805 02:17:48.538450 3354 net.cpp:382] fc7 -> fc7
- I0805 02:17:48.617386 3354 net.cpp:124] Setting up fc7
- I0805 02:17:48.617403 3354 net.cpp:131] Top shape: 256 4096 (1048576)
- I0805 02:17:48.617406 3354 net.cpp:139] Memory required for data: 2502520832
- I0805 02:17:48.617426 3354 layer_factory.hpp:77] Creating layer relu7
- I0805 02:17:48.617432 3354 net.cpp:86] Creating Layer relu7
- I0805 02:17:48.617450 3354 net.cpp:408] relu7 <- fc7
- I0805 02:17:48.617456 3354 net.cpp:369] relu7 -> fc7 (in-place)
- I0805 02:17:48.618033 3354 net.cpp:124] Setting up relu7
- I0805 02:17:48.618041 3354 net.cpp:131] Top shape: 256 4096 (1048576)
- I0805 02:17:48.618043 3354 net.cpp:139] Memory required for data: 2506715136
- I0805 02:17:48.618046 3354 layer_factory.hpp:77] Creating layer drop7
- I0805 02:17:48.618050 3354 net.cpp:86] Creating Layer drop7
- I0805 02:17:48.618052 3354 net.cpp:408] drop7 <- fc7
- I0805 02:17:48.618072 3354 net.cpp:369] drop7 -> fc7 (in-place)
- I0805 02:17:48.618116 3354 net.cpp:124] Setting up drop7
- I0805 02:17:48.618121 3354 net.cpp:131] Top shape: 256 4096 (1048576)
- I0805 02:17:48.618137 3354 net.cpp:139] Memory required for data: 2510909440
- I0805 02:17:48.618139 3354 layer_factory.hpp:77] Creating layer fc8
- I0805 02:17:48.618160 3354 net.cpp:86] Creating Layer fc8
- I0805 02:17:48.618162 3354 net.cpp:408] fc8 <- fc7
- I0805 02:17:48.618166 3354 net.cpp:382] fc8 -> fc8
- I0805 02:17:48.618891 3354 net.cpp:124] Setting up fc8
- I0805 02:17:48.618897 3354 net.cpp:131] Top shape: 256 4 (1024)
- I0805 02:17:48.618899 3354 net.cpp:139] Memory required for data: 2510913536
- I0805 02:17:48.618904 3354 layer_factory.hpp:77] Creating layer loss
- I0805 02:17:48.618923 3354 net.cpp:86] Creating Layer loss
- I0805 02:17:48.618926 3354 net.cpp:408] loss <- fc8
- I0805 02:17:48.618928 3354 net.cpp:408] loss <- label
- I0805 02:17:48.618949 3354 net.cpp:382] loss -> loss
- I0805 02:17:48.618969 3354 layer_factory.hpp:77] Creating layer loss
- I0805 02:17:48.619225 3354 net.cpp:124] Setting up loss
- I0805 02:17:48.619230 3354 net.cpp:131] Top shape: (1)
- I0805 02:17:48.619232 3354 net.cpp:134] with loss weight 1
- I0805 02:17:48.619266 3354 net.cpp:139] Memory required for data: 2510913540
- I0805 02:17:48.619283 3354 net.cpp:200] loss needs backward computation.
- I0805 02:17:48.619289 3354 net.cpp:200] fc8 needs backward computation.
- I0805 02:17:48.619307 3354 net.cpp:200] drop7 needs backward computation.
- I0805 02:17:48.619309 3354 net.cpp:200] relu7 needs backward computation.
- I0805 02:17:48.619312 3354 net.cpp:200] fc7 needs backward computation.
- I0805 02:17:48.619314 3354 net.cpp:200] drop6 needs backward computation.
- I0805 02:17:48.619318 3354 net.cpp:200] relu6 needs backward computation.
- I0805 02:17:48.619320 3354 net.cpp:200] fc6 needs backward computation.
- I0805 02:17:48.619323 3354 net.cpp:200] pool5 needs backward computation.
- I0805 02:17:48.619328 3354 net.cpp:200] relu5 needs backward computation.
- I0805 02:17:48.619329 3354 net.cpp:200] conv5 needs backward computation.
- I0805 02:17:48.619333 3354 net.cpp:200] relu4 needs backward computation.
- I0805 02:17:48.619336 3354 net.cpp:200] conv4 needs backward computation.
- I0805 02:17:48.619338 3354 net.cpp:200] relu3 needs backward computation.
- I0805 02:17:48.619354 3354 net.cpp:200] conv3 needs backward computation.
- I0805 02:17:48.619357 3354 net.cpp:200] pool2 needs backward computation.
- I0805 02:17:48.619361 3354 net.cpp:200] norm2 needs backward computation.
- I0805 02:17:48.619379 3354 net.cpp:200] relu2 needs backward computation.
- I0805 02:17:48.619381 3354 net.cpp:200] scale1 needs backward computation.
- I0805 02:17:48.619385 3354 net.cpp:200] bn1 needs backward computation.
- I0805 02:17:48.619387 3354 net.cpp:200] conv2 needs backward computation.
- I0805 02:17:48.619390 3354 net.cpp:200] pool1 needs backward computation.
- I0805 02:17:48.619393 3354 net.cpp:200] norm1 needs backward computation.
- I0805 02:17:48.619397 3354 net.cpp:200] relu1 needs backward computation.
- I0805 02:17:48.619441 3354 net.cpp:200] conv1 needs backward computation.
- I0805 02:17:48.619444 3354 net.cpp:202] data does not need backward computation.
- I0805 02:17:48.619446 3354 net.cpp:244] This network produces output loss
- I0805 02:17:48.619460 3354 net.cpp:257] Network initialization done.
- I0805 02:17:48.619674 3354 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: examples/alexnetfinetune/alexnetsade-bn.prototxt
- I0805 02:17:48.619679 3354 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
- I0805 02:17:48.619684 3354 solver.cpp:173] Creating test net (#0) specified by net file: examples/alexnetfinetune/alexnetsade-bn.prototxt
- I0805 02:17:48.619707 3354 net.cpp:296] The NetState phase (1) differed from the phase (0) specified by a rule in layer data
- I0805 02:17:48.619833 3354 net.cpp:53] Initializing net from parameters:
- name: "AlexNet"
- state {
- phase: TEST
- }
- layer {
- name: "data"
- type: "Data"
- top: "data"
- top: "label"
- include {
- phase: TEST
- }
- data_param {
- source: "examples/Mydataset_test_lmdb"
- batch_size: 50
- backend: LMDB
- }
- }
- layer {
- name: "conv1"
- type: "Convolution"
- bottom: "data"
- top: "conv1"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 96
- kernel_size: 11
- stride: 4
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "relu1"
- type: "ReLU"
- bottom: "conv1"
- top: "conv1"
- }
- layer {
- name: "norm1"
- type: "LRN"
- bottom: "conv1"
- top: "norm1"
- lrn_param {
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- }
- layer {
- name: "pool1"
- type: "Pooling"
- bottom: "norm1"
- top: "pool1"
- pooling_param {
- pool: MAX
- kernel_size: 3
- stride: 2
- }
- }
- layer {
- name: "conv2"
- type: "Convolution"
- bottom: "pool1"
- top: "conv2"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 256
- pad: 2
- kernel_size: 5
- group: 2
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "bn1"
- type: "BatchNorm"
- bottom: "conv2"
- top: "conv2"
- param {
- lr_mult: 0
- decay_mult: 0
- }
- param {
- lr_mult: 0
- decay_mult: 0
- }
- param {
- lr_mult: 0
- decay_mult: 0
- }
- }
- layer {
- name: "scale1"
- type: "Scale"
- bottom: "conv2"
- top: "conv2"
- scale_param {
- bias_term: true
- }
- }
- layer {
- name: "relu2"
- type: "ReLU"
- bottom: "conv2"
- top: "conv2"
- }
- layer {
- name: "norm2"
- type: "LRN"
- bottom: "conv2"
- top: "norm2"
- lrn_param {
- local_size: 5
- alpha: 0.0001
- beta: 0.75
- }
- }
- layer {
- name: "pool2"
- type: "Pooling"
- bottom: "norm2"
- top: "pool2"
- pooling_param {
- pool: MAX
- kernel_size: 3
- stride: 2
- }
- }
- layer {
- name: "conv3"
- type: "Convolution"
- bottom: "pool2"
- top: "conv3"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 384
- pad: 1
- kernel_size: 3
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "relu3"
- type: "ReLU"
- bottom: "conv3"
- top: "conv3"
- }
- layer {
- name: "conv4"
- type: "Convolution"
- bottom: "conv3"
- top: "conv4"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 384
- pad: 1
- kernel_size: 3
- group: 2
- weight_filler {
- type: "gaussian"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu4"
- type: "ReLU"
- bottom: "conv4"
- top: "conv4"
- }
- layer {
- name: "conv5"
- type: "Convolution"
- bottom: "conv4"
- top: "conv5"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- convolution_param {
- num_output: 256
- pad: 1
- kernel_size: 3
- group: 2
- weight_filler {
- type: "xavier"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu5"
- type: "ReLU"
- bottom: "conv5"
- top: "conv5"
- }
- layer {
- name: "pool5"
- type: "Pooling"
- bottom: "conv5"
- top: "pool5"
- pooling_param {
- pool: MAX
- kernel_size: 3
- stride: 2
- }
- }
- layer {
- name: "fc6"
- type: "InnerProduct"
- bottom: "pool5"
- top: "fc6"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 4096
- weight_filler {
- type: "xavier"
- std: 0.005
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu6"
- type: "ReLU"
- bottom: "fc6"
- top: "fc6"
- }
- layer {
- name: "drop6"
- type: "Dropout"
- bottom: "fc6"
- top: "fc6"
- dropout_param {
- dropout_ratio: 0.5
- }
- }
- layer {
- name: "fc7"
- type: "InnerProduct"
- bottom: "fc6"
- top: "fc7"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 4096
- weight_filler {
- type: "xavier"
- std: 0.005
- }
- bias_filler {
- type: "constant"
- value: 0.1
- }
- }
- }
- layer {
- name: "relu7"
- type: "ReLU"
- bottom: "fc7"
- top: "fc7"
- }
- layer {
- name: "drop7"
- type: "Dropout"
- bottom: "fc7"
- top: "fc7"
- dropout_param {
- dropout_ratio: 0.5
- }
- }
- layer {
- name: "fc8"
- type: "InnerProduct"
- bottom: "fc7"
- top: "fc8"
- param {
- lr_mult: 1
- decay_mult: 1
- }
- param {
- lr_mult: 2
- decay_mult: 0
- }
- inner_product_param {
- num_output: 4
- weight_filler {
- type: "xavier"
- std: 0.01
- }
- bias_filler {
- type: "constant"
- value: 0
- }
- }
- }
- layer {
- name: "accuracy"
- type: "Accuracy"
- bottom: "fc8"
- bottom: "label"
- top: "accuracy"
- include {
- phase: TEST
- }
- }
- layer {
- name: "loss"
- type: "SoftmaxWithLoss"
- bottom: "fc8"
- bottom: "label"
- top: "loss"
- }
- I0805 02:17:48.620080 3354 layer_factory.hpp:77] Creating layer data
- I0805 02:17:48.620121 3354 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_test_lmdb
- I0805 02:17:48.620132 3354 net.cpp:86] Creating Layer data
- I0805 02:17:48.620138 3354 net.cpp:382] data -> data
- I0805 02:17:48.620144 3354 net.cpp:382] data -> label
- I0805 02:17:48.620304 3354 data_layer.cpp:45] output data size: 50,3,227,227
- I0805 02:17:48.658275 3354 net.cpp:124] Setting up data
- I0805 02:17:48.658320 3354 net.cpp:131] Top shape: 50 3 227 227 (7729350)
- I0805 02:17:48.658324 3354 net.cpp:131] Top shape: 50 (50)
- I0805 02:17:48.658327 3354 net.cpp:139] Memory required for data: 30917600
- I0805 02:17:48.658354 3354 layer_factory.hpp:77] Creating layer label_data_1_split
- I0805 02:17:48.658362 3354 net.cpp:86] Creating Layer label_data_1_split
- I0805 02:17:48.658366 3354 net.cpp:408] label_data_1_split <- label
- I0805 02:17:48.658372 3354 net.cpp:382] label_data_1_split -> label_data_1_split_0
- I0805 02:17:48.658380 3354 net.cpp:382] label_data_1_split -> label_data_1_split_1
- I0805 02:17:48.658511 3354 net.cpp:124] Setting up label_data_1_split
- I0805 02:17:48.658536 3354 net.cpp:131] Top shape: 50 (50)
- I0805 02:17:48.658540 3354 net.cpp:131] Top shape: 50 (50)
- I0805 02:17:48.658543 3354 net.cpp:139] Memory required for data: 30918000
- I0805 02:17:48.658560 3354 layer_factory.hpp:77] Creating layer conv1
- I0805 02:17:48.658571 3354 net.cpp:86] Creating Layer conv1
- I0805 02:17:48.658573 3354 net.cpp:408] conv1 <- data
- I0805 02:17:48.658578 3354 net.cpp:382] conv1 -> conv1
- I0805 02:17:48.662369 3354 net.cpp:124] Setting up conv1
- I0805 02:17:48.662395 3354 net.cpp:131] Top shape: 50 96 55 55 (14520000)
- I0805 02:17:48.662396 3354 net.cpp:139] Memory required for data: 88998000
- I0805 02:17:48.662421 3354 layer_factory.hpp:77] Creating layer relu1
- I0805 02:17:48.662427 3354 net.cpp:86] Creating Layer relu1
- I0805 02:17:48.662431 3354 net.cpp:408] relu1 <- conv1
- I0805 02:17:48.662434 3354 net.cpp:369] relu1 -> conv1 (in-place)
- I0805 02:17:48.662585 3354 net.cpp:124] Setting up relu1
- I0805 02:17:48.662591 3354 net.cpp:131] Top shape: 50 96 55 55 (14520000)
- I0805 02:17:48.662612 3354 net.cpp:139] Memory required for data: 147078000
- I0805 02:17:48.662616 3354 layer_factory.hpp:77] Creating layer norm1
- I0805 02:17:48.662621 3354 net.cpp:86] Creating Layer norm1
- I0805 02:17:48.662624 3354 net.cpp:408] norm1 <- conv1
- I0805 02:17:48.662628 3354 net.cpp:382] norm1 -> norm1
- I0805 02:17:48.662780 3354 net.cpp:124] Setting up norm1
- I0805 02:17:48.662786 3354 net.cpp:131] Top shape: 50 96 55 55 (14520000)
- I0805 02:17:48.662802 3354 net.cpp:139] Memory required for data: 205158000
- I0805 02:17:48.662806 3354 layer_factory.hpp:77] Creating layer pool1
- I0805 02:17:48.662811 3354 net.cpp:86] Creating Layer pool1
- I0805 02:17:48.662814 3354 net.cpp:408] pool1 <- norm1
- I0805 02:17:48.662818 3354 net.cpp:382] pool1 -> pool1
- I0805 02:17:48.662848 3354 net.cpp:124] Setting up pool1
- I0805 02:17:48.662853 3354 net.cpp:131] Top shape: 50 96 27 27 (3499200)
- I0805 02:17:48.662856 3354 net.cpp:139] Memory required for data: 219154800
- I0805 02:17:48.662859 3354 layer_factory.hpp:77] Creating layer conv2
- I0805 02:17:48.662865 3354 net.cpp:86] Creating Layer conv2
- I0805 02:17:48.662868 3354 net.cpp:408] conv2 <- pool1
- I0805 02:17:48.662874 3354 net.cpp:382] conv2 -> conv2
- I0805 02:17:48.667425 3354 net.cpp:124] Setting up conv2
- I0805 02:17:48.667439 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
- I0805 02:17:48.667457 3354 net.cpp:139] Memory required for data: 256479600
- I0805 02:17:48.667465 3354 layer_factory.hpp:77] Creating layer bn1
- I0805 02:17:48.667471 3354 net.cpp:86] Creating Layer bn1
- I0805 02:17:48.667476 3354 net.cpp:408] bn1 <- conv2
- I0805 02:17:48.667481 3354 net.cpp:369] bn1 -> conv2 (in-place)
- I0805 02:17:48.667645 3354 net.cpp:124] Setting up bn1
- I0805 02:17:48.667650 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
- I0805 02:17:48.667667 3354 net.cpp:139] Memory required for data: 293804400
- I0805 02:17:48.667675 3354 layer_factory.hpp:77] Creating layer scale1
- I0805 02:17:48.667682 3354 net.cpp:86] Creating Layer scale1
- I0805 02:17:48.667685 3354 net.cpp:408] scale1 <- conv2
- I0805 02:17:48.667690 3354 net.cpp:369] scale1 -> conv2 (in-place)
- I0805 02:17:48.667734 3354 layer_factory.hpp:77] Creating layer scale1
- I0805 02:17:48.667842 3354 net.cpp:124] Setting up scale1
- I0805 02:17:48.667847 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
- I0805 02:17:48.667863 3354 net.cpp:139] Memory required for data: 331129200
- I0805 02:17:48.667870 3354 layer_factory.hpp:77] Creating layer relu2
- I0805 02:17:48.667876 3354 net.cpp:86] Creating Layer relu2
- I0805 02:17:48.667878 3354 net.cpp:408] relu2 <- conv2
- I0805 02:17:48.667881 3354 net.cpp:369] relu2 -> conv2 (in-place)
- I0805 02:17:48.668392 3354 net.cpp:124] Setting up relu2
- I0805 02:17:48.668416 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
- I0805 02:17:48.668418 3354 net.cpp:139] Memory required for data: 368454000
- I0805 02:17:48.668421 3354 layer_factory.hpp:77] Creating layer norm2
- I0805 02:17:48.668427 3354 net.cpp:86] Creating Layer norm2
- I0805 02:17:48.668431 3354 net.cpp:408] norm2 <- conv2
- I0805 02:17:48.668448 3354 net.cpp:382] norm2 -> norm2
- I0805 02:17:48.668623 3354 net.cpp:124] Setting up norm2
- I0805 02:17:48.668629 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
- I0805 02:17:48.668647 3354 net.cpp:139] Memory required for data: 405778800
- I0805 02:17:48.668649 3354 layer_factory.hpp:77] Creating layer pool2
- I0805 02:17:48.668658 3354 net.cpp:86] Creating Layer pool2
- I0805 02:17:48.668660 3354 net.cpp:408] pool2 <- norm2
- I0805 02:17:48.668664 3354 net.cpp:382] pool2 -> pool2
- I0805 02:17:48.668694 3354 net.cpp:124] Setting up pool2
- I0805 02:17:48.668699 3354 net.cpp:131] Top shape: 50 256 13 13 (2163200)
- I0805 02:17:48.668702 3354 net.cpp:139] Memory required for data: 414431600
- I0805 02:17:48.668706 3354 layer_factory.hpp:77] Creating layer conv3
- I0805 02:17:48.668714 3354 net.cpp:86] Creating Layer conv3
- I0805 02:17:48.668730 3354 net.cpp:408] conv3 <- pool2
- I0805 02:17:48.668736 3354 net.cpp:382] conv3 -> conv3
- I0805 02:17:48.678231 3354 net.cpp:124] Setting up conv3
- I0805 02:17:48.678263 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
- I0805 02:17:48.678267 3354 net.cpp:139] Memory required for data: 427410800
- I0805 02:17:48.678275 3354 layer_factory.hpp:77] Creating layer relu3
- I0805 02:17:48.678294 3354 net.cpp:86] Creating Layer relu3
- I0805 02:17:48.678297 3354 net.cpp:408] relu3 <- conv3
- I0805 02:17:48.678302 3354 net.cpp:369] relu3 -> conv3 (in-place)
- I0805 02:17:48.678485 3354 net.cpp:124] Setting up relu3
- I0805 02:17:48.678493 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
- I0805 02:17:48.678509 3354 net.cpp:139] Memory required for data: 440390000
- I0805 02:17:48.678511 3354 layer_factory.hpp:77] Creating layer conv4
- I0805 02:17:48.678521 3354 net.cpp:86] Creating Layer conv4
- I0805 02:17:48.678525 3354 net.cpp:408] conv4 <- conv3
- I0805 02:17:48.678531 3354 net.cpp:382] conv4 -> conv4
- I0805 02:17:48.687863 3354 net.cpp:124] Setting up conv4
- I0805 02:17:48.687894 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
- I0805 02:17:48.687899 3354 net.cpp:139] Memory required for data: 453369200
- I0805 02:17:48.687921 3354 layer_factory.hpp:77] Creating layer relu4
- I0805 02:17:48.687930 3354 net.cpp:86] Creating Layer relu4
- I0805 02:17:48.687934 3354 net.cpp:408] relu4 <- conv4
- I0805 02:17:48.687940 3354 net.cpp:369] relu4 -> conv4 (in-place)
- I0805 02:17:48.688117 3354 net.cpp:124] Setting up relu4
- I0805 02:17:48.688123 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
- I0805 02:17:48.688125 3354 net.cpp:139] Memory required for data: 466348400
- I0805 02:17:48.688128 3354 layer_factory.hpp:77] Creating layer conv5
- I0805 02:17:48.688153 3354 net.cpp:86] Creating Layer conv5
- I0805 02:17:48.688169 3354 net.cpp:408] conv5 <- conv4
- I0805 02:17:48.688174 3354 net.cpp:382] conv5 -> conv5
- I0805 02:17:48.693069 3354 net.cpp:124] Setting up conv5
- I0805 02:17:48.693085 3354 net.cpp:131] Top shape: 50 256 13 13 (2163200)
- I0805 02:17:48.693101 3354 net.cpp:139] Memory required for data: 475001200
- I0805 02:17:48.693107 3354 layer_factory.hpp:77] Creating layer relu5
- I0805 02:17:48.693114 3354 net.cpp:86] Creating Layer relu5
- I0805 02:17:48.693119 3354 net.cpp:408] relu5 <- conv5
- I0805 02:17:48.693122 3354 net.cpp:369] relu5 -> conv5 (in-place)
- I0805 02:17:48.693282 3354 net.cpp:124] Setting up relu5
- I0805 02:17:48.693290 3354 net.cpp:131] Top shape: 50 256 13 13 (2163200)
- I0805 02:17:48.693305 3354 net.cpp:139] Memory required for data: 483654000
- I0805 02:17:48.693306 3354 layer_factory.hpp:77] Creating layer pool5
- I0805 02:17:48.693310 3354 net.cpp:86] Creating Layer pool5
- I0805 02:17:48.693327 3354 net.cpp:408] pool5 <- conv5
- I0805 02:17:48.693331 3354 net.cpp:382] pool5 -> pool5
- I0805 02:17:48.693397 3354 net.cpp:124] Setting up pool5
- I0805 02:17:48.693401 3354 net.cpp:131] Top shape: 50 256 6 6 (460800)
- I0805 02:17:48.693404 3354 net.cpp:139] Memory required for data: 485497200
- I0805 02:17:48.693421 3354 layer_factory.hpp:77] Creating layer fc6
- I0805 02:17:48.693428 3354 net.cpp:86] Creating Layer fc6
- I0805 02:17:48.693431 3354 net.cpp:408] fc6 <- pool5
- I0805 02:17:48.693436 3354 net.cpp:382] fc6 -> fc6
- I0805 02:17:48.872923 3354 net.cpp:124] Setting up fc6
- I0805 02:17:48.872939 3354 net.cpp:131] Top shape: 50 4096 (204800)
- I0805 02:17:48.872941 3354 net.cpp:139] Memory required for data: 486316400
- I0805 02:17:48.872966 3354 layer_factory.hpp:77] Creating layer relu6
- I0805 02:17:48.872972 3354 net.cpp:86] Creating Layer relu6
- I0805 02:17:48.872989 3354 net.cpp:408] relu6 <- fc6
- I0805 02:17:48.872997 3354 net.cpp:369] relu6 -> fc6 (in-place)
- I0805 02:17:48.873232 3354 net.cpp:124] Setting up relu6
- I0805 02:17:48.873237 3354 net.cpp:131] Top shape: 50 4096 (204800)
- I0805 02:17:48.873239 3354 net.cpp:139] Memory required for data: 487135600
- I0805 02:17:48.873241 3354 layer_factory.hpp:77] Creating layer drop6
- I0805 02:17:48.873245 3354 net.cpp:86] Creating Layer drop6
- I0805 02:17:48.873293 3354 net.cpp:408] drop6 <- fc6
- I0805 02:17:48.873311 3354 net.cpp:369] drop6 -> fc6 (in-place)
- I0805 02:17:48.873360 3354 net.cpp:124] Setting up drop6
- I0805 02:17:48.873379 3354 net.cpp:131] Top shape: 50 4096 (204800)
- I0805 02:17:48.873381 3354 net.cpp:139] Memory required for data: 487954800
- I0805 02:17:48.873383 3354 layer_factory.hpp:77] Creating layer fc7
- I0805 02:17:48.873400 3354 net.cpp:86] Creating Layer fc7
- I0805 02:17:48.873404 3354 net.cpp:408] fc7 <- fc6
- I0805 02:17:48.873421 3354 net.cpp:382] fc7 -> fc7
- I0805 02:17:48.952512 3354 net.cpp:124] Setting up fc7
- I0805 02:17:48.952529 3354 net.cpp:131] Top shape: 50 4096 (204800)
- I0805 02:17:48.952533 3354 net.cpp:139] Memory required for data: 488774000
- I0805 02:17:48.952553 3354 layer_factory.hpp:77] Creating layer relu7
- I0805 02:17:48.952559 3354 net.cpp:86] Creating Layer relu7
- I0805 02:17:48.952576 3354 net.cpp:408] relu7 <- fc7
- I0805 02:17:48.952584 3354 net.cpp:369] relu7 -> fc7 (in-place)
- I0805 02:17:48.953184 3354 net.cpp:124] Setting up relu7
- I0805 02:17:48.953193 3354 net.cpp:131] Top shape: 50 4096 (204800)
- I0805 02:17:48.953196 3354 net.cpp:139] Memory required for data: 489593200
- I0805 02:17:48.953198 3354 layer_factory.hpp:77] Creating layer drop7
- I0805 02:17:48.953202 3354 net.cpp:86] Creating Layer drop7
- I0805 02:17:48.953204 3354 net.cpp:408] drop7 <- fc7
- I0805 02:17:48.953223 3354 net.cpp:369] drop7 -> fc7 (in-place)
- I0805 02:17:48.953296 3354 net.cpp:124] Setting up drop7
- I0805 02:17:48.953315 3354 net.cpp:131] Top shape: 50 4096 (204800)
- I0805 02:17:48.953320 3354 net.cpp:139] Memory required for data: 490412400
- I0805 02:17:48.953322 3354 layer_factory.hpp:77] Creating layer fc8
- I0805 02:17:48.953330 3354 net.cpp:86] Creating Layer fc8
- I0805 02:17:48.953348 3354 net.cpp:408] fc8 <- fc7
- I0805 02:17:48.953353 3354 net.cpp:382] fc8 -> fc8
- I0805 02:17:48.953526 3354 net.cpp:124] Setting up fc8
- I0805 02:17:48.953532 3354 net.cpp:131] Top shape: 50 4 (200)
- I0805 02:17:48.953534 3354 net.cpp:139] Memory required for data: 490413200
- I0805 02:17:48.953538 3354 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
- I0805 02:17:48.953541 3354 net.cpp:86] Creating Layer fc8_fc8_0_split
- I0805 02:17:48.953544 3354 net.cpp:408] fc8_fc8_0_split <- fc8
- I0805 02:17:48.953562 3354 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_0
- I0805 02:17:48.953567 3354 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_1
- I0805 02:17:48.953619 3354 net.cpp:124] Setting up fc8_fc8_0_split
- I0805 02:17:48.953624 3354 net.cpp:131] Top shape: 50 4 (200)
- I0805 02:17:48.953640 3354 net.cpp:131] Top shape: 50 4 (200)
- I0805 02:17:48.953641 3354 net.cpp:139] Memory required for data: 490414800
- I0805 02:17:48.953644 3354 layer_factory.hpp:77] Creating layer accuracy
- I0805 02:17:48.953665 3354 net.cpp:86] Creating Layer accuracy
- I0805 02:17:48.953667 3354 net.cpp:408] accuracy <- fc8_fc8_0_split_0
- I0805 02:17:48.953671 3354 net.cpp:408] accuracy <- label_data_1_split_0
- I0805 02:17:48.953675 3354 net.cpp:382] accuracy -> accuracy
- I0805 02:17:48.953682 3354 net.cpp:124] Setting up accuracy
- I0805 02:17:48.953686 3354 net.cpp:131] Top shape: (1)
- I0805 02:17:48.953688 3354 net.cpp:139] Memory required for data: 490414804
- I0805 02:17:48.953691 3354 layer_factory.hpp:77] Creating layer loss
- I0805 02:17:48.953696 3354 net.cpp:86] Creating Layer loss
- I0805 02:17:48.953698 3354 net.cpp:408] loss <- fc8_fc8_0_split_1
- I0805 02:17:48.953702 3354 net.cpp:408] loss <- label_data_1_split_1
- I0805 02:17:48.953706 3354 net.cpp:382] loss -> loss
- I0805 02:17:48.953712 3354 layer_factory.hpp:77] Creating layer loss
- I0805 02:17:48.953912 3354 net.cpp:124] Setting up loss
- I0805 02:17:48.953919 3354 net.cpp:131] Top shape: (1)
- I0805 02:17:48.953922 3354 net.cpp:134] with loss weight 1
- I0805 02:17:48.953930 3354 net.cpp:139] Memory required for data: 490414808
- I0805 02:17:48.953934 3354 net.cpp:200] loss needs backward computation.
- I0805 02:17:48.953938 3354 net.cpp:202] accuracy does not need backward computation.
- I0805 02:17:48.953955 3354 net.cpp:200] fc8_fc8_0_split needs backward computation.
- I0805 02:17:48.953959 3354 net.cpp:200] fc8 needs backward computation.
- I0805 02:17:48.953963 3354 net.cpp:200] drop7 needs backward computation.
- I0805 02:17:48.953965 3354 net.cpp:200] relu7 needs backward computation.
- I0805 02:17:48.953969 3354 net.cpp:200] fc7 needs backward computation.
- I0805 02:17:48.953972 3354 net.cpp:200] drop6 needs backward computation.
- I0805 02:17:48.953975 3354 net.cpp:200] relu6 needs backward computation.
- I0805 02:17:48.953979 3354 net.cpp:200] fc6 needs backward computation.
- I0805 02:17:48.953981 3354 net.cpp:200] pool5 needs backward computation.
- I0805 02:17:48.953985 3354 net.cpp:200] relu5 needs backward computation.
- I0805 02:17:48.953989 3354 net.cpp:200] conv5 needs backward computation.
- I0805 02:17:48.953991 3354 net.cpp:200] relu4 needs backward computation.
- I0805 02:17:48.953994 3354 net.cpp:200] conv4 needs backward computation.
- I0805 02:17:48.953999 3354 net.cpp:200] relu3 needs backward computation.
- I0805 02:17:48.954001 3354 net.cpp:200] conv3 needs backward computation.
- I0805 02:17:48.954005 3354 net.cpp:200] pool2 needs backward computation.
- I0805 02:17:48.954008 3354 net.cpp:200] norm2 needs backward computation.
- I0805 02:17:48.954012 3354 net.cpp:200] relu2 needs backward computation.
- I0805 02:17:48.954015 3354 net.cpp:200] scale1 needs backward computation.
- I0805 02:17:48.954018 3354 net.cpp:200] bn1 needs backward computation.
- I0805 02:17:48.954021 3354 net.cpp:200] conv2 needs backward computation.
- I0805 02:17:48.954025 3354 net.cpp:200] pool1 needs backward computation.
- I0805 02:17:48.954028 3354 net.cpp:200] norm1 needs backward computation.
- I0805 02:17:48.954031 3354 net.cpp:200] relu1 needs backward computation.
- I0805 02:17:48.954035 3354 net.cpp:200] conv1 needs backward computation.
- I0805 02:17:48.954038 3354 net.cpp:202] label_data_1_split does not need backward computation.
- I0805 02:17:48.954042 3354 net.cpp:202] data does not need backward computation.
- I0805 02:17:48.954044 3354 net.cpp:244] This network produces output accuracy
- I0805 02:17:48.954048 3354 net.cpp:244] This network produces output loss
- I0805 02:17:48.954063 3354 net.cpp:257] Network initialization done.
- I0805 02:17:48.954123 3354 solver.cpp:56] Solver scaffolding done.
- I0805 02:17:48.954715 3354 caffe.cpp:248] Starting Optimization
- I0805 02:17:48.954718 3354 solver.cpp:273] Solving AlexNet
- I0805 02:17:48.954722 3354 solver.cpp:274] Learning Rate Policy: step
- I0805 02:17:48.957973 3354 solver.cpp:331] Iteration 0, Testing net (#0)
- I0805 02:17:49.119514 3354 blocking_queue.cpp:49] Waiting for data
- I0805 02:17:50.964622 3354 solver.cpp:398] Test net output #0: accuracy = 0.195926
- I0805 02:17:50.964660 3354 solver.cpp:398] Test net output #1: loss = 5.40587 (* 1 = 5.40587 loss)
- I0805 02:17:51.079339 3362 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:17:51.285264 3354 solver.cpp:219] Iteration 0 (1.26553e-25 iter/s, 2.33049s/20 iters), loss = 1.47625
- I0805 02:17:51.285292 3354 solver.cpp:238] Train net output #0: loss = 1.47625 (* 1 = 1.47625 loss)
- I0805 02:17:51.285316 3354 sgd_solver.cpp:105] Iteration 0, lr = 0.001
- I0805 02:17:57.663884 3354 solver.cpp:219] Iteration 20 (3.13554 iter/s, 6.37849s/20 iters), loss = 1.09913
- I0805 02:17:57.663913 3354 solver.cpp:238] Train net output #0: loss = 1.09913 (* 1 = 1.09913 loss)
- I0805 02:17:57.663931 3354 sgd_solver.cpp:105] Iteration 20, lr = 0.001
- I0805 02:17:58.142580 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:04.046460 3354 solver.cpp:219] Iteration 40 (3.13359 iter/s, 6.38245s/20 iters), loss = 1.19678
- I0805 02:18:04.046488 3354 solver.cpp:238] Train net output #0: loss = 1.19678 (* 1 = 1.19678 loss)
- I0805 02:18:04.046494 3354 sgd_solver.cpp:105] Iteration 40, lr = 0.001
- I0805 02:18:06.158246 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:10.428968 3354 solver.cpp:219] Iteration 60 (3.13363 iter/s, 6.38238s/20 iters), loss = 1.18853
- I0805 02:18:10.429024 3354 solver.cpp:238] Train net output #0: loss = 1.18853 (* 1 = 1.18853 loss)
- I0805 02:18:10.429029 3354 sgd_solver.cpp:105] Iteration 60, lr = 0.001
- I0805 02:18:14.424785 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:16.829213 3354 solver.cpp:219] Iteration 80 (3.12496 iter/s, 6.40009s/20 iters), loss = 1.17246
- I0805 02:18:16.829241 3354 solver.cpp:238] Train net output #0: loss = 1.17246 (* 1 = 1.17246 loss)
- I0805 02:18:16.829246 3354 sgd_solver.cpp:105] Iteration 80, lr = 0.001
- I0805 02:18:22.450965 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:23.221148 3354 solver.cpp:219] Iteration 100 (3.12901 iter/s, 6.3918s/20 iters), loss = 1.12307
- I0805 02:18:23.221177 3354 solver.cpp:238] Train net output #0: loss = 1.12307 (* 1 = 1.12307 loss)
- I0805 02:18:23.221196 3354 sgd_solver.cpp:105] Iteration 100, lr = 0.001
- I0805 02:18:29.610299 3354 solver.cpp:219] Iteration 120 (3.13025 iter/s, 6.38926s/20 iters), loss = 1.09175
- I0805 02:18:29.610327 3354 solver.cpp:238] Train net output #0: loss = 1.09175 (* 1 = 1.09175 loss)
- I0805 02:18:29.610332 3354 sgd_solver.cpp:105] Iteration 120, lr = 0.001
- I0805 02:18:30.719750 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:36.019553 3354 solver.cpp:219] Iteration 140 (3.12035 iter/s, 6.40953s/20 iters), loss = 1.18237
- I0805 02:18:36.019580 3354 solver.cpp:238] Train net output #0: loss = 1.18237 (* 1 = 1.18237 loss)
- I0805 02:18:36.019599 3354 sgd_solver.cpp:105] Iteration 140, lr = 0.001
- I0805 02:18:38.764142 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:42.429481 3354 solver.cpp:219] Iteration 160 (3.12003 iter/s, 6.4102s/20 iters), loss = 1.14376
- I0805 02:18:42.429508 3354 solver.cpp:238] Train net output #0: loss = 1.14376 (* 1 = 1.14376 loss)
- I0805 02:18:42.429527 3354 sgd_solver.cpp:105] Iteration 160, lr = 0.001
- I0805 02:18:47.061050 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:48.836874 3354 solver.cpp:219] Iteration 180 (3.12126 iter/s, 6.40766s/20 iters), loss = 1.12219
- I0805 02:18:48.836901 3354 solver.cpp:238] Train net output #0: loss = 1.12219 (* 1 = 1.12219 loss)
- I0805 02:18:48.836906 3354 sgd_solver.cpp:105] Iteration 180, lr = 0.001
- I0805 02:18:55.106952 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:18:55.252671 3354 solver.cpp:219] Iteration 200 (3.11718 iter/s, 6.41606s/20 iters), loss = 0.991293
- I0805 02:18:55.252702 3354 solver.cpp:238] Train net output #0: loss = 0.991293 (* 1 = 0.991293 loss)
- I0805 02:18:55.252722 3354 sgd_solver.cpp:105] Iteration 200, lr = 0.001
- I0805 02:19:01.675238 3354 solver.cpp:219] Iteration 220 (3.11389 iter/s, 6.42282s/20 iters), loss = 1.00901
- I0805 02:19:01.675266 3354 solver.cpp:238] Train net output #0: loss = 1.00901 (* 1 = 1.00901 loss)
- I0805 02:19:01.675287 3354 sgd_solver.cpp:105] Iteration 220, lr = 0.001
- I0805 02:19:03.417192 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:19:08.092980 3354 solver.cpp:219] Iteration 240 (3.11623 iter/s, 6.418s/20 iters), loss = 0.976785
- I0805 02:19:08.093008 3354 solver.cpp:238] Train net output #0: loss = 0.976785 (* 1 = 0.976785 loss)
- I0805 02:19:08.093014 3354 sgd_solver.cpp:105] Iteration 240, lr = 0.001
- I0805 02:19:11.480767 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:19:14.534917 3354 solver.cpp:219] Iteration 260 (3.10453 iter/s, 6.44219s/20 iters), loss = 0.978768
- I0805 02:19:14.534945 3354 solver.cpp:238] Train net output #0: loss = 0.978768 (* 1 = 0.978768 loss)
- I0805 02:19:14.534965 3354 sgd_solver.cpp:105] Iteration 260, lr = 0.001
- I0805 02:19:19.823832 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:19:20.977524 3354 solver.cpp:219] Iteration 280 (3.10421 iter/s, 6.44286s/20 iters), loss = 1.0599
- I0805 02:19:20.977550 3354 solver.cpp:238] Train net output #0: loss = 1.0599 (* 1 = 1.0599 loss)
- I0805 02:19:20.977569 3354 sgd_solver.cpp:105] Iteration 280, lr = 0.001
- I0805 02:19:27.415933 3354 solver.cpp:219] Iteration 300 (3.10624 iter/s, 6.43866s/20 iters), loss = 0.888842
- I0805 02:19:27.416128 3354 solver.cpp:238] Train net output #0: loss = 0.888842 (* 1 = 0.888842 loss)
- I0805 02:19:27.416151 3354 sgd_solver.cpp:105] Iteration 300, lr = 0.001
- I0805 02:19:27.902052 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:19:33.852607 3354 solver.cpp:219] Iteration 320 (3.10715 iter/s, 6.43676s/20 iters), loss = 0.975844
- I0805 02:19:33.852635 3354 solver.cpp:238] Train net output #0: loss = 0.975844 (* 1 = 0.975844 loss)
- I0805 02:19:33.852654 3354 sgd_solver.cpp:105] Iteration 320, lr = 0.001
- I0805 02:19:35.978494 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:19:40.275147 3354 solver.cpp:219] Iteration 340 (3.11392 iter/s, 6.42278s/20 iters), loss = 0.933279
- I0805 02:19:40.275174 3354 solver.cpp:238] Train net output #0: loss = 0.933279 (* 1 = 0.933279 loss)
- I0805 02:19:40.275194 3354 sgd_solver.cpp:105] Iteration 340, lr = 0.001
- I0805 02:19:44.293598 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:19:46.716472 3354 solver.cpp:219] Iteration 360 (3.10484 iter/s, 6.44156s/20 iters), loss = 0.960518
- I0805 02:19:46.716506 3354 solver.cpp:238] Train net output #0: loss = 0.960518 (* 1 = 0.960518 loss)
- I0805 02:19:46.716524 3354 sgd_solver.cpp:105] Iteration 360, lr = 0.001
- I0805 02:19:52.412041 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:19:53.205533 3354 solver.cpp:219] Iteration 380 (3.082 iter/s, 6.48929s/20 iters), loss = 0.909624
- I0805 02:19:53.205565 3354 solver.cpp:238] Train net output #0: loss = 0.909624 (* 1 = 0.909624 loss)
- I0805 02:19:53.205585 3354 sgd_solver.cpp:105] Iteration 380, lr = 0.001
- I0805 02:19:59.693739 3354 solver.cpp:219] Iteration 400 (3.08241 iter/s, 6.48843s/20 iters), loss = 0.821957
- I0805 02:19:59.693917 3354 solver.cpp:238] Train net output #0: loss = 0.821957 (* 1 = 0.821957 loss)
- I0805 02:19:59.693939 3354 sgd_solver.cpp:105] Iteration 400, lr = 0.001
- I0805 02:20:00.816355 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:20:06.136162 3354 solver.cpp:219] Iteration 420 (3.10438 iter/s, 6.44252s/20 iters), loss = 0.957007
- I0805 02:20:06.136193 3354 solver.cpp:238] Train net output #0: loss = 0.957007 (* 1 = 0.957007 loss)
- I0805 02:20:06.136211 3354 sgd_solver.cpp:105] Iteration 420, lr = 0.001
- I0805 02:20:08.895287 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:20:12.605448 3354 solver.cpp:219] Iteration 440 (3.09143 iter/s, 6.46951s/20 iters), loss = 0.939899
- I0805 02:20:12.605476 3354 solver.cpp:238] Train net output #0: loss = 0.939899 (* 1 = 0.939899 loss)
- I0805 02:20:12.605495 3354 sgd_solver.cpp:105] Iteration 440, lr = 0.001
- I0805 02:20:17.296435 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:20:19.085794 3354 solver.cpp:219] Iteration 460 (3.08615 iter/s, 6.48057s/20 iters), loss = 0.858006
- I0805 02:20:19.085822 3354 solver.cpp:238] Train net output #0: loss = 0.858006 (* 1 = 0.858006 loss)
- I0805 02:20:19.085841 3354 sgd_solver.cpp:105] Iteration 460, lr = 0.001
- I0805 02:20:25.370455 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:20:25.511584 3354 solver.cpp:219] Iteration 480 (3.11235 iter/s, 6.426s/20 iters), loss = 0.826491
- I0805 02:20:25.511615 3354 solver.cpp:238] Train net output #0: loss = 0.826491 (* 1 = 0.826491 loss)
- I0805 02:20:25.511634 3354 sgd_solver.cpp:105] Iteration 480, lr = 0.001
- I0805 02:20:31.960383 3354 solver.cpp:219] Iteration 500 (3.10125 iter/s, 6.44901s/20 iters), loss = 0.767649
- I0805 02:20:31.960554 3354 solver.cpp:238] Train net output #0: loss = 0.767649 (* 1 = 0.767649 loss)
- I0805 02:20:31.960577 3354 sgd_solver.cpp:105] Iteration 500, lr = 0.001
- I0805 02:20:33.766893 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:20:38.403030 3354 solver.cpp:219] Iteration 520 (3.10427 iter/s, 6.44273s/20 iters), loss = 0.809904
- I0805 02:20:38.403059 3354 solver.cpp:238] Train net output #0: loss = 0.809904 (* 1 = 0.809904 loss)
- I0805 02:20:38.403079 3354 sgd_solver.cpp:105] Iteration 520, lr = 0.001
- I0805 02:20:41.798969 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:20:44.858299 3354 solver.cpp:219] Iteration 540 (3.09815 iter/s, 6.45547s/20 iters), loss = 0.744726
- I0805 02:20:44.858327 3354 solver.cpp:238] Train net output #0: loss = 0.744726 (* 1 = 0.744726 loss)
- I0805 02:20:44.858346 3354 sgd_solver.cpp:105] Iteration 540, lr = 0.001
- I0805 02:20:50.157848 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:20:51.305193 3354 solver.cpp:219] Iteration 560 (3.10217 iter/s, 6.4471s/20 iters), loss = 0.758878
- I0805 02:20:51.305222 3354 solver.cpp:238] Train net output #0: loss = 0.758878 (* 1 = 0.758878 loss)
- I0805 02:20:51.305240 3354 sgd_solver.cpp:105] Iteration 560, lr = 0.001
- I0805 02:20:57.777695 3354 solver.cpp:219] Iteration 580 (3.0899 iter/s, 6.4727s/20 iters), loss = 0.636537
- I0805 02:20:57.777724 3354 solver.cpp:238] Train net output #0: loss = 0.636537 (* 1 = 0.636537 loss)
- I0805 02:20:57.777745 3354 sgd_solver.cpp:105] Iteration 580, lr = 0.001
- I0805 02:20:58.271718 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:21:04.231633 3354 solver.cpp:219] Iteration 600 (3.09879 iter/s, 6.45413s/20 iters), loss = 0.752477
- I0805 02:21:04.231822 3354 solver.cpp:238] Train net output #0: loss = 0.752477 (* 1 = 0.752477 loss)
- I0805 02:21:04.231869 3354 sgd_solver.cpp:105] Iteration 600, lr = 0.001
- I0805 02:21:06.627866 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:21:07.148818 3354 solver.cpp:331] Iteration 610, Testing net (#0)
- I0805 02:21:09.101388 3354 solver.cpp:398] Test net output #0: accuracy = 0.166296
- I0805 02:21:09.101428 3354 solver.cpp:398] Test net output #1: loss = 2.17123 (* 1 = 2.17123 loss)
- I0805 02:21:12.643909 3354 solver.cpp:219] Iteration 620 (2.37744 iter/s, 8.41239s/20 iters), loss = 0.724874
- I0805 02:21:12.643936 3354 solver.cpp:238] Train net output #0: loss = 0.724874 (* 1 = 0.724874 loss)
- I0805 02:21:12.643956 3354 sgd_solver.cpp:105] Iteration 620, lr = 0.001
- I0805 02:21:16.677302 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:21:19.090366 3354 solver.cpp:219] Iteration 640 (3.10239 iter/s, 6.44665s/20 iters), loss = 0.696024
- I0805 02:21:19.090395 3354 solver.cpp:238] Train net output #0: loss = 0.696024 (* 1 = 0.696024 loss)
- I0805 02:21:19.090415 3354 sgd_solver.cpp:105] Iteration 640, lr = 0.001
- I0805 02:21:24.768528 3361 data_layer.cpp:73] Restarting data prefetching from start.
- I0805 02:21:25.534693 3354 solver.cpp:219] Iteration 660 (3.10342 iter/s, 6.44451s/20 iters), loss = 0.636167
- I0805 02:21:25.534720 3354 solver.cpp:238] Train net output #0: loss = 0.636167 (* 1 = 0.636167 loss)
- I0805 02:21:25.534725 3354 sgd_solver.cpp:105] Iteration 660, lr = 0.001
- ^CI0805 02:21:26.827807 3354 solver.cpp:448] Snapshotting to binary proto file models/bvlc_alexnet/caffe_alexnet_sinatrain_iter_665.caffemodel
- I0805 02:21:27.386745 3354 sgd_solver.cpp:273] Snapshotting solver state to binary proto file models/bvlc_alexnet/caffe_alexnet_sinatrain_iter_665.solverstate
- I0805 02:21:27.628018 3354 solver.cpp:295] Optimization stopped early.
- I0805 02:21:27.628033 3354 caffe.cpp:259] Optimization Done.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement