Advertisement
Guest User

Untitled

a guest
Aug 4th, 2017
212
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 57.01 KB | None | 0 0
  1. sina@sina-Z170X-UD3:~/code/caffe$ ./build/tools/caffe train --solver=examples/alexnetfinetune/solver_sina.prototxt
  2. I0805 02:17:47.682703 3354 caffe.cpp:218] Using GPUs 0
  3. I0805 02:17:47.721066 3354 caffe.cpp:223] GPU 0: GeForce GTX 1070
  4. I0805 02:17:47.932503 3354 solver.cpp:44] Initializing solver from parameters:
  5. test_iter: 54
  6. test_interval: 610
  7. base_lr: 0.001
  8. display: 20
  9. max_iter: 5000
  10. lr_policy: "step"
  11. gamma: 0.1
  12. momentum: 0.9
  13. weight_decay: 0.0005
  14. stepsize: 100000
  15. snapshot: 4999
  16. snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_sinatrain"
  17. solver_mode: GPU
  18. device_id: 0
  19. net: "examples/alexnetfinetune/alexnetsade-bn.prototxt"
  20. train_state {
  21. level: 0
  22. stage: ""
  23. }
  24. type: "SGD"
  25. I0805 02:17:47.932651 3354 solver.cpp:87] Creating training net from net file: examples/alexnetfinetune/alexnetsade-bn.prototxt
  26. I0805 02:17:47.932893 3354 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: examples/alexnetfinetune/alexnetsade-bn.prototxt
  27. I0805 02:17:47.932900 3354 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
  28. I0805 02:17:47.932983 3354 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
  29. I0805 02:17:47.932994 3354 net.cpp:296] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
  30. I0805 02:17:47.933147 3354 net.cpp:53] Initializing net from parameters:
  31. name: "AlexNet"
  32. state {
  33. phase: TRAIN
  34. level: 0
  35. stage: ""
  36. }
  37. layer {
  38. name: "data"
  39. type: "Data"
  40. top: "data"
  41. top: "label"
  42. include {
  43. phase: TRAIN
  44. }
  45. data_param {
  46. source: "examples/Mydataset_train_lmdb"
  47. batch_size: 256
  48. backend: LMDB
  49. }
  50. }
  51. layer {
  52. name: "conv1"
  53. type: "Convolution"
  54. bottom: "data"
  55. top: "conv1"
  56. param {
  57. lr_mult: 1
  58. decay_mult: 1
  59. }
  60. param {
  61. lr_mult: 2
  62. decay_mult: 0
  63. }
  64. convolution_param {
  65. num_output: 96
  66. kernel_size: 11
  67. stride: 4
  68. weight_filler {
  69. type: "gaussian"
  70. std: 0.01
  71. }
  72. bias_filler {
  73. type: "constant"
  74. value: 0
  75. }
  76. }
  77. }
  78. layer {
  79. name: "relu1"
  80. type: "ReLU"
  81. bottom: "conv1"
  82. top: "conv1"
  83. }
  84. layer {
  85. name: "norm1"
  86. type: "LRN"
  87. bottom: "conv1"
  88. top: "norm1"
  89. lrn_param {
  90. local_size: 5
  91. alpha: 0.0001
  92. beta: 0.75
  93. }
  94. }
  95. layer {
  96. name: "pool1"
  97. type: "Pooling"
  98. bottom: "norm1"
  99. top: "pool1"
  100. pooling_param {
  101. pool: MAX
  102. kernel_size: 3
  103. stride: 2
  104. }
  105. }
  106. layer {
  107. name: "conv2"
  108. type: "Convolution"
  109. bottom: "pool1"
  110. top: "conv2"
  111. param {
  112. lr_mult: 1
  113. decay_mult: 1
  114. }
  115. param {
  116. lr_mult: 2
  117. decay_mult: 0
  118. }
  119. convolution_param {
  120. num_output: 256
  121. pad: 2
  122. kernel_size: 5
  123. group: 2
  124. weight_filler {
  125. type: "gaussian"
  126. std: 0.01
  127. }
  128. bias_filler {
  129. type: "constant"
  130. value: 0.1
  131. }
  132. }
  133. }
  134. layer {
  135. name: "bn1"
  136. type: "BatchNorm"
  137. bottom: "conv2"
  138. top: "conv2"
  139. param {
  140. lr_mult: 0
  141. decay_mult: 0
  142. }
  143. param {
  144. lr_mult: 0
  145. decay_mult: 0
  146. }
  147. param {
  148. lr_mult: 0
  149. decay_mult: 0
  150. }
  151. }
  152. layer {
  153. name: "scale1"
  154. type: "Scale"
  155. bottom: "conv2"
  156. top: "conv2"
  157. scale_param {
  158. bias_term: true
  159. }
  160. }
  161. layer {
  162. name: "relu2"
  163. type: "ReLU"
  164. bottom: "conv2"
  165. top: "conv2"
  166. }
  167. layer {
  168. name: "norm2"
  169. type: "LRN"
  170. bottom: "conv2"
  171. top: "norm2"
  172. lrn_param {
  173. local_size: 5
  174. alpha: 0.0001
  175. beta: 0.75
  176. }
  177. }
  178. layer {
  179. name: "pool2"
  180. type: "Pooling"
  181. bottom: "norm2"
  182. top: "pool2"
  183. pooling_param {
  184. pool: MAX
  185. kernel_size: 3
  186. stride: 2
  187. }
  188. }
  189. layer {
  190. name: "conv3"
  191. type: "Convolution"
  192. bottom: "pool2"
  193. top: "conv3"
  194. param {
  195. lr_mult: 1
  196. decay_mult: 1
  197. }
  198. param {
  199. lr_mult: 2
  200. decay_mult: 0
  201. }
  202. convolution_param {
  203. num_output: 384
  204. pad: 1
  205. kernel_size: 3
  206. weight_filler {
  207. type: "gaussian"
  208. std: 0.01
  209. }
  210. bias_filler {
  211. type: "constant"
  212. value: 0
  213. }
  214. }
  215. }
  216. layer {
  217. name: "relu3"
  218. type: "ReLU"
  219. bottom: "conv3"
  220. top: "conv3"
  221. }
  222. layer {
  223. name: "conv4"
  224. type: "Convolution"
  225. bottom: "conv3"
  226. top: "conv4"
  227. param {
  228. lr_mult: 1
  229. decay_mult: 1
  230. }
  231. param {
  232. lr_mult: 2
  233. decay_mult: 0
  234. }
  235. convolution_param {
  236. num_output: 384
  237. pad: 1
  238. kernel_size: 3
  239. group: 2
  240. weight_filler {
  241. type: "gaussian"
  242. std: 0.01
  243. }
  244. bias_filler {
  245. type: "constant"
  246. value: 0.1
  247. }
  248. }
  249. }
  250. layer {
  251. name: "relu4"
  252. type: "ReLU"
  253. bottom: "conv4"
  254. top: "conv4"
  255. }
  256. layer {
  257. name: "conv5"
  258. type: "Convolution"
  259. bottom: "conv4"
  260. top: "conv5"
  261. param {
  262. lr_mult: 1
  263. decay_mult: 1
  264. }
  265. param {
  266. lr_mult: 2
  267. decay_mult: 0
  268. }
  269. convolution_param {
  270. num_output: 256
  271. pad: 1
  272. kernel_size: 3
  273. group: 2
  274. weight_filler {
  275. type: "xavier"
  276. std: 0.01
  277. }
  278. bias_filler {
  279. type: "constant"
  280. value: 0.1
  281. }
  282. }
  283. }
  284. layer {
  285. name: "relu5"
  286. type: "ReLU"
  287. bottom: "conv5"
  288. top: "conv5"
  289. }
  290. layer {
  291. name: "pool5"
  292. type: "Pooling"
  293. bottom: "conv5"
  294. top: "pool5"
  295. pooling_param {
  296. pool: MAX
  297. kernel_size: 3
  298. stride: 2
  299. }
  300. }
  301. layer {
  302. name: "fc6"
  303. type: "InnerProduct"
  304. bottom: "pool5"
  305. top: "fc6"
  306. param {
  307. lr_mult: 1
  308. decay_mult: 1
  309. }
  310. param {
  311. lr_mult: 2
  312. decay_mult: 0
  313. }
  314. inner_product_param {
  315. num_output: 4096
  316. weight_filler {
  317. type: "xavier"
  318. std: 0.005
  319. }
  320. bias_filler {
  321. type: "constant"
  322. value: 0.1
  323. }
  324. }
  325. }
  326. layer {
  327. name: "relu6"
  328. type: "ReLU"
  329. bottom: "fc6"
  330. top: "fc6"
  331. }
  332. layer {
  333. name: "drop6"
  334. type: "Dropout"
  335. bottom: "fc6"
  336. top: "fc6"
  337. dropout_param {
  338. dropout_ratio: 0.5
  339. }
  340. }
  341. layer {
  342. name: "fc7"
  343. type: "InnerProduct"
  344. bottom: "fc6"
  345. top: "fc7"
  346. param {
  347. lr_mult: 1
  348. decay_mult: 1
  349. }
  350. param {
  351. lr_mult: 2
  352. decay_mult: 0
  353. }
  354. inner_product_param {
  355. num_output: 4096
  356. weight_filler {
  357. type: "xavier"
  358. std: 0.005
  359. }
  360. bias_filler {
  361. type: "constant"
  362. value: 0.1
  363. }
  364. }
  365. }
  366. layer {
  367. name: "relu7"
  368. type: "ReLU"
  369. bottom: "fc7"
  370. top: "fc7"
  371. }
  372. layer {
  373. name: "drop7"
  374. type: "Dropout"
  375. bottom: "fc7"
  376. top: "fc7"
  377. dropout_param {
  378. dropout_ratio: 0.5
  379. }
  380. }
  381. layer {
  382. name: "fc8"
  383. type: "InnerProduct"
  384. bottom: "fc7"
  385. top: "fc8"
  386. param {
  387. lr_mult: 1
  388. decay_mult: 1
  389. }
  390. param {
  391. lr_mult: 2
  392. decay_mult: 0
  393. }
  394. inner_product_param {
  395. num_output: 4
  396. weight_filler {
  397. type: "xavier"
  398. std: 0.01
  399. }
  400. bias_filler {
  401. type: "constant"
  402. value: 0
  403. }
  404. }
  405. }
  406. layer {
  407. name: "loss"
  408. type: "SoftmaxWithLoss"
  409. bottom: "fc8"
  410. bottom: "label"
  411. top: "loss"
  412. }
  413. I0805 02:17:47.933511 3354 layer_factory.hpp:77] Creating layer data
  414. I0805 02:17:47.933637 3354 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_train_lmdb
  415. I0805 02:17:47.933686 3354 net.cpp:86] Creating Layer data
  416. I0805 02:17:47.933693 3354 net.cpp:382] data -> data
  417. I0805 02:17:47.933733 3354 net.cpp:382] data -> label
  418. I0805 02:17:47.934499 3354 data_layer.cpp:45] output data size: 256,3,227,227
  419. I0805 02:17:48.112761 3354 net.cpp:124] Setting up data
  420. I0805 02:17:48.112792 3354 net.cpp:131] Top shape: 256 3 227 227 (39574272)
  421. I0805 02:17:48.112810 3354 net.cpp:131] Top shape: 256 (256)
  422. I0805 02:17:48.112812 3354 net.cpp:139] Memory required for data: 158298112
  423. I0805 02:17:48.112834 3354 layer_factory.hpp:77] Creating layer conv1
  424. I0805 02:17:48.112849 3354 net.cpp:86] Creating Layer conv1
  425. I0805 02:17:48.112855 3354 net.cpp:408] conv1 <- data
  426. I0805 02:17:48.112864 3354 net.cpp:382] conv1 -> conv1
  427. I0805 02:17:48.310364 3354 net.cpp:124] Setting up conv1
  428. I0805 02:17:48.310398 3354 net.cpp:131] Top shape: 256 96 55 55 (74342400)
  429. I0805 02:17:48.310401 3354 net.cpp:139] Memory required for data: 455667712
  430. I0805 02:17:48.310437 3354 layer_factory.hpp:77] Creating layer relu1
  431. I0805 02:17:48.310448 3354 net.cpp:86] Creating Layer relu1
  432. I0805 02:17:48.310451 3354 net.cpp:408] relu1 <- conv1
  433. I0805 02:17:48.310456 3354 net.cpp:369] relu1 -> conv1 (in-place)
  434. I0805 02:17:48.310626 3354 net.cpp:124] Setting up relu1
  435. I0805 02:17:48.310631 3354 net.cpp:131] Top shape: 256 96 55 55 (74342400)
  436. I0805 02:17:48.310648 3354 net.cpp:139] Memory required for data: 753037312
  437. I0805 02:17:48.310650 3354 layer_factory.hpp:77] Creating layer norm1
  438. I0805 02:17:48.310673 3354 net.cpp:86] Creating Layer norm1
  439. I0805 02:17:48.310676 3354 net.cpp:408] norm1 <- conv1
  440. I0805 02:17:48.310680 3354 net.cpp:382] norm1 -> norm1
  441. I0805 02:17:48.311266 3354 net.cpp:124] Setting up norm1
  442. I0805 02:17:48.311275 3354 net.cpp:131] Top shape: 256 96 55 55 (74342400)
  443. I0805 02:17:48.311290 3354 net.cpp:139] Memory required for data: 1050406912
  444. I0805 02:17:48.311293 3354 layer_factory.hpp:77] Creating layer pool1
  445. I0805 02:17:48.311314 3354 net.cpp:86] Creating Layer pool1
  446. I0805 02:17:48.311317 3354 net.cpp:408] pool1 <- norm1
  447. I0805 02:17:48.311322 3354 net.cpp:382] pool1 -> pool1
  448. I0805 02:17:48.311357 3354 net.cpp:124] Setting up pool1
  449. I0805 02:17:48.311375 3354 net.cpp:131] Top shape: 256 96 27 27 (17915904)
  450. I0805 02:17:48.311378 3354 net.cpp:139] Memory required for data: 1122070528
  451. I0805 02:17:48.311394 3354 layer_factory.hpp:77] Creating layer conv2
  452. I0805 02:17:48.311403 3354 net.cpp:86] Creating Layer conv2
  453. I0805 02:17:48.311406 3354 net.cpp:408] conv2 <- pool1
  454. I0805 02:17:48.311410 3354 net.cpp:382] conv2 -> conv2
  455. I0805 02:17:48.316013 3354 net.cpp:124] Setting up conv2
  456. I0805 02:17:48.316030 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
  457. I0805 02:17:48.316047 3354 net.cpp:139] Memory required for data: 1313173504
  458. I0805 02:17:48.316058 3354 layer_factory.hpp:77] Creating layer bn1
  459. I0805 02:17:48.316066 3354 net.cpp:86] Creating Layer bn1
  460. I0805 02:17:48.316071 3354 net.cpp:408] bn1 <- conv2
  461. I0805 02:17:48.316076 3354 net.cpp:369] bn1 -> conv2 (in-place)
  462. I0805 02:17:48.316227 3354 net.cpp:124] Setting up bn1
  463. I0805 02:17:48.316232 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
  464. I0805 02:17:48.316249 3354 net.cpp:139] Memory required for data: 1504276480
  465. I0805 02:17:48.316256 3354 layer_factory.hpp:77] Creating layer scale1
  466. I0805 02:17:48.316262 3354 net.cpp:86] Creating Layer scale1
  467. I0805 02:17:48.316265 3354 net.cpp:408] scale1 <- conv2
  468. I0805 02:17:48.316270 3354 net.cpp:369] scale1 -> conv2 (in-place)
  469. I0805 02:17:48.316314 3354 layer_factory.hpp:77] Creating layer scale1
  470. I0805 02:17:48.316419 3354 net.cpp:124] Setting up scale1
  471. I0805 02:17:48.316424 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
  472. I0805 02:17:48.316442 3354 net.cpp:139] Memory required for data: 1695379456
  473. I0805 02:17:48.316448 3354 layer_factory.hpp:77] Creating layer relu2
  474. I0805 02:17:48.316454 3354 net.cpp:86] Creating Layer relu2
  475. I0805 02:17:48.316457 3354 net.cpp:408] relu2 <- conv2
  476. I0805 02:17:48.316462 3354 net.cpp:369] relu2 -> conv2 (in-place)
  477. I0805 02:17:48.318275 3354 net.cpp:124] Setting up relu2
  478. I0805 02:17:48.318284 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
  479. I0805 02:17:48.318301 3354 net.cpp:139] Memory required for data: 1886482432
  480. I0805 02:17:48.318305 3354 layer_factory.hpp:77] Creating layer norm2
  481. I0805 02:17:48.318310 3354 net.cpp:86] Creating Layer norm2
  482. I0805 02:17:48.318313 3354 net.cpp:408] norm2 <- conv2
  483. I0805 02:17:48.318318 3354 net.cpp:382] norm2 -> norm2
  484. I0805 02:17:48.318470 3354 net.cpp:124] Setting up norm2
  485. I0805 02:17:48.318476 3354 net.cpp:131] Top shape: 256 256 27 27 (47775744)
  486. I0805 02:17:48.318493 3354 net.cpp:139] Memory required for data: 2077585408
  487. I0805 02:17:48.318496 3354 layer_factory.hpp:77] Creating layer pool2
  488. I0805 02:17:48.318501 3354 net.cpp:86] Creating Layer pool2
  489. I0805 02:17:48.318506 3354 net.cpp:408] pool2 <- norm2
  490. I0805 02:17:48.318509 3354 net.cpp:382] pool2 -> pool2
  491. I0805 02:17:48.318549 3354 net.cpp:124] Setting up pool2
  492. I0805 02:17:48.318553 3354 net.cpp:131] Top shape: 256 256 13 13 (11075584)
  493. I0805 02:17:48.318572 3354 net.cpp:139] Memory required for data: 2121887744
  494. I0805 02:17:48.318573 3354 layer_factory.hpp:77] Creating layer conv3
  495. I0805 02:17:48.318581 3354 net.cpp:86] Creating Layer conv3
  496. I0805 02:17:48.318584 3354 net.cpp:408] conv3 <- pool2
  497. I0805 02:17:48.318590 3354 net.cpp:382] conv3 -> conv3
  498. I0805 02:17:48.342455 3354 net.cpp:124] Setting up conv3
  499. I0805 02:17:48.342473 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
  500. I0805 02:17:48.342475 3354 net.cpp:139] Memory required for data: 2188341248
  501. I0805 02:17:48.342497 3354 layer_factory.hpp:77] Creating layer relu3
  502. I0805 02:17:48.342519 3354 net.cpp:86] Creating Layer relu3
  503. I0805 02:17:48.342550 3354 net.cpp:408] relu3 <- conv3
  504. I0805 02:17:48.342571 3354 net.cpp:369] relu3 -> conv3 (in-place)
  505. I0805 02:17:48.342731 3354 net.cpp:124] Setting up relu3
  506. I0805 02:17:48.342737 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
  507. I0805 02:17:48.342739 3354 net.cpp:139] Memory required for data: 2254794752
  508. I0805 02:17:48.342741 3354 layer_factory.hpp:77] Creating layer conv4
  509. I0805 02:17:48.342764 3354 net.cpp:86] Creating Layer conv4
  510. I0805 02:17:48.342767 3354 net.cpp:408] conv4 <- conv3
  511. I0805 02:17:48.342787 3354 net.cpp:382] conv4 -> conv4
  512. I0805 02:17:48.350215 3354 net.cpp:124] Setting up conv4
  513. I0805 02:17:48.350246 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
  514. I0805 02:17:48.350248 3354 net.cpp:139] Memory required for data: 2321248256
  515. I0805 02:17:48.350270 3354 layer_factory.hpp:77] Creating layer relu4
  516. I0805 02:17:48.350281 3354 net.cpp:86] Creating Layer relu4
  517. I0805 02:17:48.350286 3354 net.cpp:408] relu4 <- conv4
  518. I0805 02:17:48.350291 3354 net.cpp:369] relu4 -> conv4 (in-place)
  519. I0805 02:17:48.350456 3354 net.cpp:124] Setting up relu4
  520. I0805 02:17:48.350462 3354 net.cpp:131] Top shape: 256 384 13 13 (16613376)
  521. I0805 02:17:48.350466 3354 net.cpp:139] Memory required for data: 2387701760
  522. I0805 02:17:48.350481 3354 layer_factory.hpp:77] Creating layer conv5
  523. I0805 02:17:48.350488 3354 net.cpp:86] Creating Layer conv5
  524. I0805 02:17:48.350507 3354 net.cpp:408] conv5 <- conv4
  525. I0805 02:17:48.350512 3354 net.cpp:382] conv5 -> conv5
  526. I0805 02:17:48.355535 3354 net.cpp:124] Setting up conv5
  527. I0805 02:17:48.355564 3354 net.cpp:131] Top shape: 256 256 13 13 (11075584)
  528. I0805 02:17:48.355567 3354 net.cpp:139] Memory required for data: 2432004096
  529. I0805 02:17:48.355590 3354 layer_factory.hpp:77] Creating layer relu5
  530. I0805 02:17:48.355604 3354 net.cpp:86] Creating Layer relu5
  531. I0805 02:17:48.355607 3354 net.cpp:408] relu5 <- conv5
  532. I0805 02:17:48.355624 3354 net.cpp:369] relu5 -> conv5 (in-place)
  533. I0805 02:17:48.355823 3354 net.cpp:124] Setting up relu5
  534. I0805 02:17:48.355829 3354 net.cpp:131] Top shape: 256 256 13 13 (11075584)
  535. I0805 02:17:48.355844 3354 net.cpp:139] Memory required for data: 2476306432
  536. I0805 02:17:48.355846 3354 layer_factory.hpp:77] Creating layer pool5
  537. I0805 02:17:48.355867 3354 net.cpp:86] Creating Layer pool5
  538. I0805 02:17:48.355870 3354 net.cpp:408] pool5 <- conv5
  539. I0805 02:17:48.355876 3354 net.cpp:382] pool5 -> pool5
  540. I0805 02:17:48.355913 3354 net.cpp:124] Setting up pool5
  541. I0805 02:17:48.355918 3354 net.cpp:131] Top shape: 256 256 6 6 (2359296)
  542. I0805 02:17:48.355921 3354 net.cpp:139] Memory required for data: 2485743616
  543. I0805 02:17:48.355922 3354 layer_factory.hpp:77] Creating layer fc6
  544. I0805 02:17:48.355927 3354 net.cpp:86] Creating Layer fc6
  545. I0805 02:17:48.355929 3354 net.cpp:408] fc6 <- pool5
  546. I0805 02:17:48.355934 3354 net.cpp:382] fc6 -> fc6
  547. I0805 02:17:48.538027 3354 net.cpp:124] Setting up fc6
  548. I0805 02:17:48.538043 3354 net.cpp:131] Top shape: 256 4096 (1048576)
  549. I0805 02:17:48.538045 3354 net.cpp:139] Memory required for data: 2489937920
  550. I0805 02:17:48.538069 3354 layer_factory.hpp:77] Creating layer relu6
  551. I0805 02:17:48.538091 3354 net.cpp:86] Creating Layer relu6
  552. I0805 02:17:48.538095 3354 net.cpp:408] relu6 <- fc6
  553. I0805 02:17:48.538101 3354 net.cpp:369] relu6 -> fc6 (in-place)
  554. I0805 02:17:48.538276 3354 net.cpp:124] Setting up relu6
  555. I0805 02:17:48.538282 3354 net.cpp:131] Top shape: 256 4096 (1048576)
  556. I0805 02:17:48.538285 3354 net.cpp:139] Memory required for data: 2494132224
  557. I0805 02:17:48.538287 3354 layer_factory.hpp:77] Creating layer drop6
  558. I0805 02:17:48.538292 3354 net.cpp:86] Creating Layer drop6
  559. I0805 02:17:48.538308 3354 net.cpp:408] drop6 <- fc6
  560. I0805 02:17:48.538311 3354 net.cpp:369] drop6 -> fc6 (in-place)
  561. I0805 02:17:48.538362 3354 net.cpp:124] Setting up drop6
  562. I0805 02:17:48.538378 3354 net.cpp:131] Top shape: 256 4096 (1048576)
  563. I0805 02:17:48.538380 3354 net.cpp:139] Memory required for data: 2498326528
  564. I0805 02:17:48.538383 3354 layer_factory.hpp:77] Creating layer fc7
  565. I0805 02:17:48.538429 3354 net.cpp:86] Creating Layer fc7
  566. I0805 02:17:48.538444 3354 net.cpp:408] fc7 <- fc6
  567. I0805 02:17:48.538450 3354 net.cpp:382] fc7 -> fc7
  568. I0805 02:17:48.617386 3354 net.cpp:124] Setting up fc7
  569. I0805 02:17:48.617403 3354 net.cpp:131] Top shape: 256 4096 (1048576)
  570. I0805 02:17:48.617406 3354 net.cpp:139] Memory required for data: 2502520832
  571. I0805 02:17:48.617426 3354 layer_factory.hpp:77] Creating layer relu7
  572. I0805 02:17:48.617432 3354 net.cpp:86] Creating Layer relu7
  573. I0805 02:17:48.617450 3354 net.cpp:408] relu7 <- fc7
  574. I0805 02:17:48.617456 3354 net.cpp:369] relu7 -> fc7 (in-place)
  575. I0805 02:17:48.618033 3354 net.cpp:124] Setting up relu7
  576. I0805 02:17:48.618041 3354 net.cpp:131] Top shape: 256 4096 (1048576)
  577. I0805 02:17:48.618043 3354 net.cpp:139] Memory required for data: 2506715136
  578. I0805 02:17:48.618046 3354 layer_factory.hpp:77] Creating layer drop7
  579. I0805 02:17:48.618050 3354 net.cpp:86] Creating Layer drop7
  580. I0805 02:17:48.618052 3354 net.cpp:408] drop7 <- fc7
  581. I0805 02:17:48.618072 3354 net.cpp:369] drop7 -> fc7 (in-place)
  582. I0805 02:17:48.618116 3354 net.cpp:124] Setting up drop7
  583. I0805 02:17:48.618121 3354 net.cpp:131] Top shape: 256 4096 (1048576)
  584. I0805 02:17:48.618137 3354 net.cpp:139] Memory required for data: 2510909440
  585. I0805 02:17:48.618139 3354 layer_factory.hpp:77] Creating layer fc8
  586. I0805 02:17:48.618160 3354 net.cpp:86] Creating Layer fc8
  587. I0805 02:17:48.618162 3354 net.cpp:408] fc8 <- fc7
  588. I0805 02:17:48.618166 3354 net.cpp:382] fc8 -> fc8
  589. I0805 02:17:48.618891 3354 net.cpp:124] Setting up fc8
  590. I0805 02:17:48.618897 3354 net.cpp:131] Top shape: 256 4 (1024)
  591. I0805 02:17:48.618899 3354 net.cpp:139] Memory required for data: 2510913536
  592. I0805 02:17:48.618904 3354 layer_factory.hpp:77] Creating layer loss
  593. I0805 02:17:48.618923 3354 net.cpp:86] Creating Layer loss
  594. I0805 02:17:48.618926 3354 net.cpp:408] loss <- fc8
  595. I0805 02:17:48.618928 3354 net.cpp:408] loss <- label
  596. I0805 02:17:48.618949 3354 net.cpp:382] loss -> loss
  597. I0805 02:17:48.618969 3354 layer_factory.hpp:77] Creating layer loss
  598. I0805 02:17:48.619225 3354 net.cpp:124] Setting up loss
  599. I0805 02:17:48.619230 3354 net.cpp:131] Top shape: (1)
  600. I0805 02:17:48.619232 3354 net.cpp:134] with loss weight 1
  601. I0805 02:17:48.619266 3354 net.cpp:139] Memory required for data: 2510913540
  602. I0805 02:17:48.619283 3354 net.cpp:200] loss needs backward computation.
  603. I0805 02:17:48.619289 3354 net.cpp:200] fc8 needs backward computation.
  604. I0805 02:17:48.619307 3354 net.cpp:200] drop7 needs backward computation.
  605. I0805 02:17:48.619309 3354 net.cpp:200] relu7 needs backward computation.
  606. I0805 02:17:48.619312 3354 net.cpp:200] fc7 needs backward computation.
  607. I0805 02:17:48.619314 3354 net.cpp:200] drop6 needs backward computation.
  608. I0805 02:17:48.619318 3354 net.cpp:200] relu6 needs backward computation.
  609. I0805 02:17:48.619320 3354 net.cpp:200] fc6 needs backward computation.
  610. I0805 02:17:48.619323 3354 net.cpp:200] pool5 needs backward computation.
  611. I0805 02:17:48.619328 3354 net.cpp:200] relu5 needs backward computation.
  612. I0805 02:17:48.619329 3354 net.cpp:200] conv5 needs backward computation.
  613. I0805 02:17:48.619333 3354 net.cpp:200] relu4 needs backward computation.
  614. I0805 02:17:48.619336 3354 net.cpp:200] conv4 needs backward computation.
  615. I0805 02:17:48.619338 3354 net.cpp:200] relu3 needs backward computation.
  616. I0805 02:17:48.619354 3354 net.cpp:200] conv3 needs backward computation.
  617. I0805 02:17:48.619357 3354 net.cpp:200] pool2 needs backward computation.
  618. I0805 02:17:48.619361 3354 net.cpp:200] norm2 needs backward computation.
  619. I0805 02:17:48.619379 3354 net.cpp:200] relu2 needs backward computation.
  620. I0805 02:17:48.619381 3354 net.cpp:200] scale1 needs backward computation.
  621. I0805 02:17:48.619385 3354 net.cpp:200] bn1 needs backward computation.
  622. I0805 02:17:48.619387 3354 net.cpp:200] conv2 needs backward computation.
  623. I0805 02:17:48.619390 3354 net.cpp:200] pool1 needs backward computation.
  624. I0805 02:17:48.619393 3354 net.cpp:200] norm1 needs backward computation.
  625. I0805 02:17:48.619397 3354 net.cpp:200] relu1 needs backward computation.
  626. I0805 02:17:48.619441 3354 net.cpp:200] conv1 needs backward computation.
  627. I0805 02:17:48.619444 3354 net.cpp:202] data does not need backward computation.
  628. I0805 02:17:48.619446 3354 net.cpp:244] This network produces output loss
  629. I0805 02:17:48.619460 3354 net.cpp:257] Network initialization done.
  630. I0805 02:17:48.619674 3354 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: examples/alexnetfinetune/alexnetsade-bn.prototxt
  631. I0805 02:17:48.619679 3354 upgrade_proto.cpp:80] Successfully upgraded batch norm layers using deprecated params.
  632. I0805 02:17:48.619684 3354 solver.cpp:173] Creating test net (#0) specified by net file: examples/alexnetfinetune/alexnetsade-bn.prototxt
  633. I0805 02:17:48.619707 3354 net.cpp:296] The NetState phase (1) differed from the phase (0) specified by a rule in layer data
  634. I0805 02:17:48.619833 3354 net.cpp:53] Initializing net from parameters:
  635. name: "AlexNet"
  636. state {
  637. phase: TEST
  638. }
  639. layer {
  640. name: "data"
  641. type: "Data"
  642. top: "data"
  643. top: "label"
  644. include {
  645. phase: TEST
  646. }
  647. data_param {
  648. source: "examples/Mydataset_test_lmdb"
  649. batch_size: 50
  650. backend: LMDB
  651. }
  652. }
  653. layer {
  654. name: "conv1"
  655. type: "Convolution"
  656. bottom: "data"
  657. top: "conv1"
  658. param {
  659. lr_mult: 1
  660. decay_mult: 1
  661. }
  662. param {
  663. lr_mult: 2
  664. decay_mult: 0
  665. }
  666. convolution_param {
  667. num_output: 96
  668. kernel_size: 11
  669. stride: 4
  670. weight_filler {
  671. type: "gaussian"
  672. std: 0.01
  673. }
  674. bias_filler {
  675. type: "constant"
  676. value: 0
  677. }
  678. }
  679. }
  680. layer {
  681. name: "relu1"
  682. type: "ReLU"
  683. bottom: "conv1"
  684. top: "conv1"
  685. }
  686. layer {
  687. name: "norm1"
  688. type: "LRN"
  689. bottom: "conv1"
  690. top: "norm1"
  691. lrn_param {
  692. local_size: 5
  693. alpha: 0.0001
  694. beta: 0.75
  695. }
  696. }
  697. layer {
  698. name: "pool1"
  699. type: "Pooling"
  700. bottom: "norm1"
  701. top: "pool1"
  702. pooling_param {
  703. pool: MAX
  704. kernel_size: 3
  705. stride: 2
  706. }
  707. }
  708. layer {
  709. name: "conv2"
  710. type: "Convolution"
  711. bottom: "pool1"
  712. top: "conv2"
  713. param {
  714. lr_mult: 1
  715. decay_mult: 1
  716. }
  717. param {
  718. lr_mult: 2
  719. decay_mult: 0
  720. }
  721. convolution_param {
  722. num_output: 256
  723. pad: 2
  724. kernel_size: 5
  725. group: 2
  726. weight_filler {
  727. type: "gaussian"
  728. std: 0.01
  729. }
  730. bias_filler {
  731. type: "constant"
  732. value: 0.1
  733. }
  734. }
  735. }
  736. layer {
  737. name: "bn1"
  738. type: "BatchNorm"
  739. bottom: "conv2"
  740. top: "conv2"
  741. param {
  742. lr_mult: 0
  743. decay_mult: 0
  744. }
  745. param {
  746. lr_mult: 0
  747. decay_mult: 0
  748. }
  749. param {
  750. lr_mult: 0
  751. decay_mult: 0
  752. }
  753. }
  754. layer {
  755. name: "scale1"
  756. type: "Scale"
  757. bottom: "conv2"
  758. top: "conv2"
  759. scale_param {
  760. bias_term: true
  761. }
  762. }
  763. layer {
  764. name: "relu2"
  765. type: "ReLU"
  766. bottom: "conv2"
  767. top: "conv2"
  768. }
  769. layer {
  770. name: "norm2"
  771. type: "LRN"
  772. bottom: "conv2"
  773. top: "norm2"
  774. lrn_param {
  775. local_size: 5
  776. alpha: 0.0001
  777. beta: 0.75
  778. }
  779. }
  780. layer {
  781. name: "pool2"
  782. type: "Pooling"
  783. bottom: "norm2"
  784. top: "pool2"
  785. pooling_param {
  786. pool: MAX
  787. kernel_size: 3
  788. stride: 2
  789. }
  790. }
  791. layer {
  792. name: "conv3"
  793. type: "Convolution"
  794. bottom: "pool2"
  795. top: "conv3"
  796. param {
  797. lr_mult: 1
  798. decay_mult: 1
  799. }
  800. param {
  801. lr_mult: 2
  802. decay_mult: 0
  803. }
  804. convolution_param {
  805. num_output: 384
  806. pad: 1
  807. kernel_size: 3
  808. weight_filler {
  809. type: "gaussian"
  810. std: 0.01
  811. }
  812. bias_filler {
  813. type: "constant"
  814. value: 0
  815. }
  816. }
  817. }
  818. layer {
  819. name: "relu3"
  820. type: "ReLU"
  821. bottom: "conv3"
  822. top: "conv3"
  823. }
  824. layer {
  825. name: "conv4"
  826. type: "Convolution"
  827. bottom: "conv3"
  828. top: "conv4"
  829. param {
  830. lr_mult: 1
  831. decay_mult: 1
  832. }
  833. param {
  834. lr_mult: 2
  835. decay_mult: 0
  836. }
  837. convolution_param {
  838. num_output: 384
  839. pad: 1
  840. kernel_size: 3
  841. group: 2
  842. weight_filler {
  843. type: "gaussian"
  844. std: 0.01
  845. }
  846. bias_filler {
  847. type: "constant"
  848. value: 0.1
  849. }
  850. }
  851. }
  852. layer {
  853. name: "relu4"
  854. type: "ReLU"
  855. bottom: "conv4"
  856. top: "conv4"
  857. }
  858. layer {
  859. name: "conv5"
  860. type: "Convolution"
  861. bottom: "conv4"
  862. top: "conv5"
  863. param {
  864. lr_mult: 1
  865. decay_mult: 1
  866. }
  867. param {
  868. lr_mult: 2
  869. decay_mult: 0
  870. }
  871. convolution_param {
  872. num_output: 256
  873. pad: 1
  874. kernel_size: 3
  875. group: 2
  876. weight_filler {
  877. type: "xavier"
  878. std: 0.01
  879. }
  880. bias_filler {
  881. type: "constant"
  882. value: 0.1
  883. }
  884. }
  885. }
  886. layer {
  887. name: "relu5"
  888. type: "ReLU"
  889. bottom: "conv5"
  890. top: "conv5"
  891. }
  892. layer {
  893. name: "pool5"
  894. type: "Pooling"
  895. bottom: "conv5"
  896. top: "pool5"
  897. pooling_param {
  898. pool: MAX
  899. kernel_size: 3
  900. stride: 2
  901. }
  902. }
  903. layer {
  904. name: "fc6"
  905. type: "InnerProduct"
  906. bottom: "pool5"
  907. top: "fc6"
  908. param {
  909. lr_mult: 1
  910. decay_mult: 1
  911. }
  912. param {
  913. lr_mult: 2
  914. decay_mult: 0
  915. }
  916. inner_product_param {
  917. num_output: 4096
  918. weight_filler {
  919. type: "xavier"
  920. std: 0.005
  921. }
  922. bias_filler {
  923. type: "constant"
  924. value: 0.1
  925. }
  926. }
  927. }
  928. layer {
  929. name: "relu6"
  930. type: "ReLU"
  931. bottom: "fc6"
  932. top: "fc6"
  933. }
  934. layer {
  935. name: "drop6"
  936. type: "Dropout"
  937. bottom: "fc6"
  938. top: "fc6"
  939. dropout_param {
  940. dropout_ratio: 0.5
  941. }
  942. }
  943. layer {
  944. name: "fc7"
  945. type: "InnerProduct"
  946. bottom: "fc6"
  947. top: "fc7"
  948. param {
  949. lr_mult: 1
  950. decay_mult: 1
  951. }
  952. param {
  953. lr_mult: 2
  954. decay_mult: 0
  955. }
  956. inner_product_param {
  957. num_output: 4096
  958. weight_filler {
  959. type: "xavier"
  960. std: 0.005
  961. }
  962. bias_filler {
  963. type: "constant"
  964. value: 0.1
  965. }
  966. }
  967. }
  968. layer {
  969. name: "relu7"
  970. type: "ReLU"
  971. bottom: "fc7"
  972. top: "fc7"
  973. }
  974. layer {
  975. name: "drop7"
  976. type: "Dropout"
  977. bottom: "fc7"
  978. top: "fc7"
  979. dropout_param {
  980. dropout_ratio: 0.5
  981. }
  982. }
  983. layer {
  984. name: "fc8"
  985. type: "InnerProduct"
  986. bottom: "fc7"
  987. top: "fc8"
  988. param {
  989. lr_mult: 1
  990. decay_mult: 1
  991. }
  992. param {
  993. lr_mult: 2
  994. decay_mult: 0
  995. }
  996. inner_product_param {
  997. num_output: 4
  998. weight_filler {
  999. type: "xavier"
  1000. std: 0.01
  1001. }
  1002. bias_filler {
  1003. type: "constant"
  1004. value: 0
  1005. }
  1006. }
  1007. }
  1008. layer {
  1009. name: "accuracy"
  1010. type: "Accuracy"
  1011. bottom: "fc8"
  1012. bottom: "label"
  1013. top: "accuracy"
  1014. include {
  1015. phase: TEST
  1016. }
  1017. }
  1018. layer {
  1019. name: "loss"
  1020. type: "SoftmaxWithLoss"
  1021. bottom: "fc8"
  1022. bottom: "label"
  1023. top: "loss"
  1024. }
  1025. I0805 02:17:48.620080 3354 layer_factory.hpp:77] Creating layer data
  1026. I0805 02:17:48.620121 3354 db_lmdb.cpp:35] Opened lmdb examples/Mydataset_test_lmdb
  1027. I0805 02:17:48.620132 3354 net.cpp:86] Creating Layer data
  1028. I0805 02:17:48.620138 3354 net.cpp:382] data -> data
  1029. I0805 02:17:48.620144 3354 net.cpp:382] data -> label
  1030. I0805 02:17:48.620304 3354 data_layer.cpp:45] output data size: 50,3,227,227
  1031. I0805 02:17:48.658275 3354 net.cpp:124] Setting up data
  1032. I0805 02:17:48.658320 3354 net.cpp:131] Top shape: 50 3 227 227 (7729350)
  1033. I0805 02:17:48.658324 3354 net.cpp:131] Top shape: 50 (50)
  1034. I0805 02:17:48.658327 3354 net.cpp:139] Memory required for data: 30917600
  1035. I0805 02:17:48.658354 3354 layer_factory.hpp:77] Creating layer label_data_1_split
  1036. I0805 02:17:48.658362 3354 net.cpp:86] Creating Layer label_data_1_split
  1037. I0805 02:17:48.658366 3354 net.cpp:408] label_data_1_split <- label
  1038. I0805 02:17:48.658372 3354 net.cpp:382] label_data_1_split -> label_data_1_split_0
  1039. I0805 02:17:48.658380 3354 net.cpp:382] label_data_1_split -> label_data_1_split_1
  1040. I0805 02:17:48.658511 3354 net.cpp:124] Setting up label_data_1_split
  1041. I0805 02:17:48.658536 3354 net.cpp:131] Top shape: 50 (50)
  1042. I0805 02:17:48.658540 3354 net.cpp:131] Top shape: 50 (50)
  1043. I0805 02:17:48.658543 3354 net.cpp:139] Memory required for data: 30918000
  1044. I0805 02:17:48.658560 3354 layer_factory.hpp:77] Creating layer conv1
  1045. I0805 02:17:48.658571 3354 net.cpp:86] Creating Layer conv1
  1046. I0805 02:17:48.658573 3354 net.cpp:408] conv1 <- data
  1047. I0805 02:17:48.658578 3354 net.cpp:382] conv1 -> conv1
  1048. I0805 02:17:48.662369 3354 net.cpp:124] Setting up conv1
  1049. I0805 02:17:48.662395 3354 net.cpp:131] Top shape: 50 96 55 55 (14520000)
  1050. I0805 02:17:48.662396 3354 net.cpp:139] Memory required for data: 88998000
  1051. I0805 02:17:48.662421 3354 layer_factory.hpp:77] Creating layer relu1
  1052. I0805 02:17:48.662427 3354 net.cpp:86] Creating Layer relu1
  1053. I0805 02:17:48.662431 3354 net.cpp:408] relu1 <- conv1
  1054. I0805 02:17:48.662434 3354 net.cpp:369] relu1 -> conv1 (in-place)
  1055. I0805 02:17:48.662585 3354 net.cpp:124] Setting up relu1
  1056. I0805 02:17:48.662591 3354 net.cpp:131] Top shape: 50 96 55 55 (14520000)
  1057. I0805 02:17:48.662612 3354 net.cpp:139] Memory required for data: 147078000
  1058. I0805 02:17:48.662616 3354 layer_factory.hpp:77] Creating layer norm1
  1059. I0805 02:17:48.662621 3354 net.cpp:86] Creating Layer norm1
  1060. I0805 02:17:48.662624 3354 net.cpp:408] norm1 <- conv1
  1061. I0805 02:17:48.662628 3354 net.cpp:382] norm1 -> norm1
  1062. I0805 02:17:48.662780 3354 net.cpp:124] Setting up norm1
  1063. I0805 02:17:48.662786 3354 net.cpp:131] Top shape: 50 96 55 55 (14520000)
  1064. I0805 02:17:48.662802 3354 net.cpp:139] Memory required for data: 205158000
  1065. I0805 02:17:48.662806 3354 layer_factory.hpp:77] Creating layer pool1
  1066. I0805 02:17:48.662811 3354 net.cpp:86] Creating Layer pool1
  1067. I0805 02:17:48.662814 3354 net.cpp:408] pool1 <- norm1
  1068. I0805 02:17:48.662818 3354 net.cpp:382] pool1 -> pool1
  1069. I0805 02:17:48.662848 3354 net.cpp:124] Setting up pool1
  1070. I0805 02:17:48.662853 3354 net.cpp:131] Top shape: 50 96 27 27 (3499200)
  1071. I0805 02:17:48.662856 3354 net.cpp:139] Memory required for data: 219154800
  1072. I0805 02:17:48.662859 3354 layer_factory.hpp:77] Creating layer conv2
  1073. I0805 02:17:48.662865 3354 net.cpp:86] Creating Layer conv2
  1074. I0805 02:17:48.662868 3354 net.cpp:408] conv2 <- pool1
  1075. I0805 02:17:48.662874 3354 net.cpp:382] conv2 -> conv2
  1076. I0805 02:17:48.667425 3354 net.cpp:124] Setting up conv2
  1077. I0805 02:17:48.667439 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
  1078. I0805 02:17:48.667457 3354 net.cpp:139] Memory required for data: 256479600
  1079. I0805 02:17:48.667465 3354 layer_factory.hpp:77] Creating layer bn1
  1080. I0805 02:17:48.667471 3354 net.cpp:86] Creating Layer bn1
  1081. I0805 02:17:48.667476 3354 net.cpp:408] bn1 <- conv2
  1082. I0805 02:17:48.667481 3354 net.cpp:369] bn1 -> conv2 (in-place)
  1083. I0805 02:17:48.667645 3354 net.cpp:124] Setting up bn1
  1084. I0805 02:17:48.667650 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
  1085. I0805 02:17:48.667667 3354 net.cpp:139] Memory required for data: 293804400
  1086. I0805 02:17:48.667675 3354 layer_factory.hpp:77] Creating layer scale1
  1087. I0805 02:17:48.667682 3354 net.cpp:86] Creating Layer scale1
  1088. I0805 02:17:48.667685 3354 net.cpp:408] scale1 <- conv2
  1089. I0805 02:17:48.667690 3354 net.cpp:369] scale1 -> conv2 (in-place)
  1090. I0805 02:17:48.667734 3354 layer_factory.hpp:77] Creating layer scale1
  1091. I0805 02:17:48.667842 3354 net.cpp:124] Setting up scale1
  1092. I0805 02:17:48.667847 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
  1093. I0805 02:17:48.667863 3354 net.cpp:139] Memory required for data: 331129200
  1094. I0805 02:17:48.667870 3354 layer_factory.hpp:77] Creating layer relu2
  1095. I0805 02:17:48.667876 3354 net.cpp:86] Creating Layer relu2
  1096. I0805 02:17:48.667878 3354 net.cpp:408] relu2 <- conv2
  1097. I0805 02:17:48.667881 3354 net.cpp:369] relu2 -> conv2 (in-place)
  1098. I0805 02:17:48.668392 3354 net.cpp:124] Setting up relu2
  1099. I0805 02:17:48.668416 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
  1100. I0805 02:17:48.668418 3354 net.cpp:139] Memory required for data: 368454000
  1101. I0805 02:17:48.668421 3354 layer_factory.hpp:77] Creating layer norm2
  1102. I0805 02:17:48.668427 3354 net.cpp:86] Creating Layer norm2
  1103. I0805 02:17:48.668431 3354 net.cpp:408] norm2 <- conv2
  1104. I0805 02:17:48.668448 3354 net.cpp:382] norm2 -> norm2
  1105. I0805 02:17:48.668623 3354 net.cpp:124] Setting up norm2
  1106. I0805 02:17:48.668629 3354 net.cpp:131] Top shape: 50 256 27 27 (9331200)
  1107. I0805 02:17:48.668647 3354 net.cpp:139] Memory required for data: 405778800
  1108. I0805 02:17:48.668649 3354 layer_factory.hpp:77] Creating layer pool2
  1109. I0805 02:17:48.668658 3354 net.cpp:86] Creating Layer pool2
  1110. I0805 02:17:48.668660 3354 net.cpp:408] pool2 <- norm2
  1111. I0805 02:17:48.668664 3354 net.cpp:382] pool2 -> pool2
  1112. I0805 02:17:48.668694 3354 net.cpp:124] Setting up pool2
  1113. I0805 02:17:48.668699 3354 net.cpp:131] Top shape: 50 256 13 13 (2163200)
  1114. I0805 02:17:48.668702 3354 net.cpp:139] Memory required for data: 414431600
  1115. I0805 02:17:48.668706 3354 layer_factory.hpp:77] Creating layer conv3
  1116. I0805 02:17:48.668714 3354 net.cpp:86] Creating Layer conv3
  1117. I0805 02:17:48.668730 3354 net.cpp:408] conv3 <- pool2
  1118. I0805 02:17:48.668736 3354 net.cpp:382] conv3 -> conv3
  1119. I0805 02:17:48.678231 3354 net.cpp:124] Setting up conv3
  1120. I0805 02:17:48.678263 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
  1121. I0805 02:17:48.678267 3354 net.cpp:139] Memory required for data: 427410800
  1122. I0805 02:17:48.678275 3354 layer_factory.hpp:77] Creating layer relu3
  1123. I0805 02:17:48.678294 3354 net.cpp:86] Creating Layer relu3
  1124. I0805 02:17:48.678297 3354 net.cpp:408] relu3 <- conv3
  1125. I0805 02:17:48.678302 3354 net.cpp:369] relu3 -> conv3 (in-place)
  1126. I0805 02:17:48.678485 3354 net.cpp:124] Setting up relu3
  1127. I0805 02:17:48.678493 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
  1128. I0805 02:17:48.678509 3354 net.cpp:139] Memory required for data: 440390000
  1129. I0805 02:17:48.678511 3354 layer_factory.hpp:77] Creating layer conv4
  1130. I0805 02:17:48.678521 3354 net.cpp:86] Creating Layer conv4
  1131. I0805 02:17:48.678525 3354 net.cpp:408] conv4 <- conv3
  1132. I0805 02:17:48.678531 3354 net.cpp:382] conv4 -> conv4
  1133. I0805 02:17:48.687863 3354 net.cpp:124] Setting up conv4
  1134. I0805 02:17:48.687894 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
  1135. I0805 02:17:48.687899 3354 net.cpp:139] Memory required for data: 453369200
  1136. I0805 02:17:48.687921 3354 layer_factory.hpp:77] Creating layer relu4
  1137. I0805 02:17:48.687930 3354 net.cpp:86] Creating Layer relu4
  1138. I0805 02:17:48.687934 3354 net.cpp:408] relu4 <- conv4
  1139. I0805 02:17:48.687940 3354 net.cpp:369] relu4 -> conv4 (in-place)
  1140. I0805 02:17:48.688117 3354 net.cpp:124] Setting up relu4
  1141. I0805 02:17:48.688123 3354 net.cpp:131] Top shape: 50 384 13 13 (3244800)
  1142. I0805 02:17:48.688125 3354 net.cpp:139] Memory required for data: 466348400
  1143. I0805 02:17:48.688128 3354 layer_factory.hpp:77] Creating layer conv5
  1144. I0805 02:17:48.688153 3354 net.cpp:86] Creating Layer conv5
  1145. I0805 02:17:48.688169 3354 net.cpp:408] conv5 <- conv4
  1146. I0805 02:17:48.688174 3354 net.cpp:382] conv5 -> conv5
  1147. I0805 02:17:48.693069 3354 net.cpp:124] Setting up conv5
  1148. I0805 02:17:48.693085 3354 net.cpp:131] Top shape: 50 256 13 13 (2163200)
  1149. I0805 02:17:48.693101 3354 net.cpp:139] Memory required for data: 475001200
  1150. I0805 02:17:48.693107 3354 layer_factory.hpp:77] Creating layer relu5
  1151. I0805 02:17:48.693114 3354 net.cpp:86] Creating Layer relu5
  1152. I0805 02:17:48.693119 3354 net.cpp:408] relu5 <- conv5
  1153. I0805 02:17:48.693122 3354 net.cpp:369] relu5 -> conv5 (in-place)
  1154. I0805 02:17:48.693282 3354 net.cpp:124] Setting up relu5
  1155. I0805 02:17:48.693290 3354 net.cpp:131] Top shape: 50 256 13 13 (2163200)
  1156. I0805 02:17:48.693305 3354 net.cpp:139] Memory required for data: 483654000
  1157. I0805 02:17:48.693306 3354 layer_factory.hpp:77] Creating layer pool5
  1158. I0805 02:17:48.693310 3354 net.cpp:86] Creating Layer pool5
  1159. I0805 02:17:48.693327 3354 net.cpp:408] pool5 <- conv5
  1160. I0805 02:17:48.693331 3354 net.cpp:382] pool5 -> pool5
  1161. I0805 02:17:48.693397 3354 net.cpp:124] Setting up pool5
  1162. I0805 02:17:48.693401 3354 net.cpp:131] Top shape: 50 256 6 6 (460800)
  1163. I0805 02:17:48.693404 3354 net.cpp:139] Memory required for data: 485497200
  1164. I0805 02:17:48.693421 3354 layer_factory.hpp:77] Creating layer fc6
  1165. I0805 02:17:48.693428 3354 net.cpp:86] Creating Layer fc6
  1166. I0805 02:17:48.693431 3354 net.cpp:408] fc6 <- pool5
  1167. I0805 02:17:48.693436 3354 net.cpp:382] fc6 -> fc6
  1168. I0805 02:17:48.872923 3354 net.cpp:124] Setting up fc6
  1169. I0805 02:17:48.872939 3354 net.cpp:131] Top shape: 50 4096 (204800)
  1170. I0805 02:17:48.872941 3354 net.cpp:139] Memory required for data: 486316400
  1171. I0805 02:17:48.872966 3354 layer_factory.hpp:77] Creating layer relu6
  1172. I0805 02:17:48.872972 3354 net.cpp:86] Creating Layer relu6
  1173. I0805 02:17:48.872989 3354 net.cpp:408] relu6 <- fc6
  1174. I0805 02:17:48.872997 3354 net.cpp:369] relu6 -> fc6 (in-place)
  1175. I0805 02:17:48.873232 3354 net.cpp:124] Setting up relu6
  1176. I0805 02:17:48.873237 3354 net.cpp:131] Top shape: 50 4096 (204800)
  1177. I0805 02:17:48.873239 3354 net.cpp:139] Memory required for data: 487135600
  1178. I0805 02:17:48.873241 3354 layer_factory.hpp:77] Creating layer drop6
  1179. I0805 02:17:48.873245 3354 net.cpp:86] Creating Layer drop6
  1180. I0805 02:17:48.873293 3354 net.cpp:408] drop6 <- fc6
  1181. I0805 02:17:48.873311 3354 net.cpp:369] drop6 -> fc6 (in-place)
  1182. I0805 02:17:48.873360 3354 net.cpp:124] Setting up drop6
  1183. I0805 02:17:48.873379 3354 net.cpp:131] Top shape: 50 4096 (204800)
  1184. I0805 02:17:48.873381 3354 net.cpp:139] Memory required for data: 487954800
  1185. I0805 02:17:48.873383 3354 layer_factory.hpp:77] Creating layer fc7
  1186. I0805 02:17:48.873400 3354 net.cpp:86] Creating Layer fc7
  1187. I0805 02:17:48.873404 3354 net.cpp:408] fc7 <- fc6
  1188. I0805 02:17:48.873421 3354 net.cpp:382] fc7 -> fc7
  1189. I0805 02:17:48.952512 3354 net.cpp:124] Setting up fc7
  1190. I0805 02:17:48.952529 3354 net.cpp:131] Top shape: 50 4096 (204800)
  1191. I0805 02:17:48.952533 3354 net.cpp:139] Memory required for data: 488774000
  1192. I0805 02:17:48.952553 3354 layer_factory.hpp:77] Creating layer relu7
  1193. I0805 02:17:48.952559 3354 net.cpp:86] Creating Layer relu7
  1194. I0805 02:17:48.952576 3354 net.cpp:408] relu7 <- fc7
  1195. I0805 02:17:48.952584 3354 net.cpp:369] relu7 -> fc7 (in-place)
  1196. I0805 02:17:48.953184 3354 net.cpp:124] Setting up relu7
  1197. I0805 02:17:48.953193 3354 net.cpp:131] Top shape: 50 4096 (204800)
  1198. I0805 02:17:48.953196 3354 net.cpp:139] Memory required for data: 489593200
  1199. I0805 02:17:48.953198 3354 layer_factory.hpp:77] Creating layer drop7
  1200. I0805 02:17:48.953202 3354 net.cpp:86] Creating Layer drop7
  1201. I0805 02:17:48.953204 3354 net.cpp:408] drop7 <- fc7
  1202. I0805 02:17:48.953223 3354 net.cpp:369] drop7 -> fc7 (in-place)
  1203. I0805 02:17:48.953296 3354 net.cpp:124] Setting up drop7
  1204. I0805 02:17:48.953315 3354 net.cpp:131] Top shape: 50 4096 (204800)
  1205. I0805 02:17:48.953320 3354 net.cpp:139] Memory required for data: 490412400
  1206. I0805 02:17:48.953322 3354 layer_factory.hpp:77] Creating layer fc8
  1207. I0805 02:17:48.953330 3354 net.cpp:86] Creating Layer fc8
  1208. I0805 02:17:48.953348 3354 net.cpp:408] fc8 <- fc7
  1209. I0805 02:17:48.953353 3354 net.cpp:382] fc8 -> fc8
  1210. I0805 02:17:48.953526 3354 net.cpp:124] Setting up fc8
  1211. I0805 02:17:48.953532 3354 net.cpp:131] Top shape: 50 4 (200)
  1212. I0805 02:17:48.953534 3354 net.cpp:139] Memory required for data: 490413200
  1213. I0805 02:17:48.953538 3354 layer_factory.hpp:77] Creating layer fc8_fc8_0_split
  1214. I0805 02:17:48.953541 3354 net.cpp:86] Creating Layer fc8_fc8_0_split
  1215. I0805 02:17:48.953544 3354 net.cpp:408] fc8_fc8_0_split <- fc8
  1216. I0805 02:17:48.953562 3354 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_0
  1217. I0805 02:17:48.953567 3354 net.cpp:382] fc8_fc8_0_split -> fc8_fc8_0_split_1
  1218. I0805 02:17:48.953619 3354 net.cpp:124] Setting up fc8_fc8_0_split
  1219. I0805 02:17:48.953624 3354 net.cpp:131] Top shape: 50 4 (200)
  1220. I0805 02:17:48.953640 3354 net.cpp:131] Top shape: 50 4 (200)
  1221. I0805 02:17:48.953641 3354 net.cpp:139] Memory required for data: 490414800
  1222. I0805 02:17:48.953644 3354 layer_factory.hpp:77] Creating layer accuracy
  1223. I0805 02:17:48.953665 3354 net.cpp:86] Creating Layer accuracy
  1224. I0805 02:17:48.953667 3354 net.cpp:408] accuracy <- fc8_fc8_0_split_0
  1225. I0805 02:17:48.953671 3354 net.cpp:408] accuracy <- label_data_1_split_0
  1226. I0805 02:17:48.953675 3354 net.cpp:382] accuracy -> accuracy
  1227. I0805 02:17:48.953682 3354 net.cpp:124] Setting up accuracy
  1228. I0805 02:17:48.953686 3354 net.cpp:131] Top shape: (1)
  1229. I0805 02:17:48.953688 3354 net.cpp:139] Memory required for data: 490414804
  1230. I0805 02:17:48.953691 3354 layer_factory.hpp:77] Creating layer loss
  1231. I0805 02:17:48.953696 3354 net.cpp:86] Creating Layer loss
  1232. I0805 02:17:48.953698 3354 net.cpp:408] loss <- fc8_fc8_0_split_1
  1233. I0805 02:17:48.953702 3354 net.cpp:408] loss <- label_data_1_split_1
  1234. I0805 02:17:48.953706 3354 net.cpp:382] loss -> loss
  1235. I0805 02:17:48.953712 3354 layer_factory.hpp:77] Creating layer loss
  1236. I0805 02:17:48.953912 3354 net.cpp:124] Setting up loss
  1237. I0805 02:17:48.953919 3354 net.cpp:131] Top shape: (1)
  1238. I0805 02:17:48.953922 3354 net.cpp:134] with loss weight 1
  1239. I0805 02:17:48.953930 3354 net.cpp:139] Memory required for data: 490414808
  1240. I0805 02:17:48.953934 3354 net.cpp:200] loss needs backward computation.
  1241. I0805 02:17:48.953938 3354 net.cpp:202] accuracy does not need backward computation.
  1242. I0805 02:17:48.953955 3354 net.cpp:200] fc8_fc8_0_split needs backward computation.
  1243. I0805 02:17:48.953959 3354 net.cpp:200] fc8 needs backward computation.
  1244. I0805 02:17:48.953963 3354 net.cpp:200] drop7 needs backward computation.
  1245. I0805 02:17:48.953965 3354 net.cpp:200] relu7 needs backward computation.
  1246. I0805 02:17:48.953969 3354 net.cpp:200] fc7 needs backward computation.
  1247. I0805 02:17:48.953972 3354 net.cpp:200] drop6 needs backward computation.
  1248. I0805 02:17:48.953975 3354 net.cpp:200] relu6 needs backward computation.
  1249. I0805 02:17:48.953979 3354 net.cpp:200] fc6 needs backward computation.
  1250. I0805 02:17:48.953981 3354 net.cpp:200] pool5 needs backward computation.
  1251. I0805 02:17:48.953985 3354 net.cpp:200] relu5 needs backward computation.
  1252. I0805 02:17:48.953989 3354 net.cpp:200] conv5 needs backward computation.
  1253. I0805 02:17:48.953991 3354 net.cpp:200] relu4 needs backward computation.
  1254. I0805 02:17:48.953994 3354 net.cpp:200] conv4 needs backward computation.
  1255. I0805 02:17:48.953999 3354 net.cpp:200] relu3 needs backward computation.
  1256. I0805 02:17:48.954001 3354 net.cpp:200] conv3 needs backward computation.
  1257. I0805 02:17:48.954005 3354 net.cpp:200] pool2 needs backward computation.
  1258. I0805 02:17:48.954008 3354 net.cpp:200] norm2 needs backward computation.
  1259. I0805 02:17:48.954012 3354 net.cpp:200] relu2 needs backward computation.
  1260. I0805 02:17:48.954015 3354 net.cpp:200] scale1 needs backward computation.
  1261. I0805 02:17:48.954018 3354 net.cpp:200] bn1 needs backward computation.
  1262. I0805 02:17:48.954021 3354 net.cpp:200] conv2 needs backward computation.
  1263. I0805 02:17:48.954025 3354 net.cpp:200] pool1 needs backward computation.
  1264. I0805 02:17:48.954028 3354 net.cpp:200] norm1 needs backward computation.
  1265. I0805 02:17:48.954031 3354 net.cpp:200] relu1 needs backward computation.
  1266. I0805 02:17:48.954035 3354 net.cpp:200] conv1 needs backward computation.
  1267. I0805 02:17:48.954038 3354 net.cpp:202] label_data_1_split does not need backward computation.
  1268. I0805 02:17:48.954042 3354 net.cpp:202] data does not need backward computation.
  1269. I0805 02:17:48.954044 3354 net.cpp:244] This network produces output accuracy
  1270. I0805 02:17:48.954048 3354 net.cpp:244] This network produces output loss
  1271. I0805 02:17:48.954063 3354 net.cpp:257] Network initialization done.
  1272. I0805 02:17:48.954123 3354 solver.cpp:56] Solver scaffolding done.
  1273. I0805 02:17:48.954715 3354 caffe.cpp:248] Starting Optimization
  1274. I0805 02:17:48.954718 3354 solver.cpp:273] Solving AlexNet
  1275. I0805 02:17:48.954722 3354 solver.cpp:274] Learning Rate Policy: step
  1276. I0805 02:17:48.957973 3354 solver.cpp:331] Iteration 0, Testing net (#0)
  1277. I0805 02:17:49.119514 3354 blocking_queue.cpp:49] Waiting for data
  1278. I0805 02:17:50.964622 3354 solver.cpp:398] Test net output #0: accuracy = 0.195926
  1279. I0805 02:17:50.964660 3354 solver.cpp:398] Test net output #1: loss = 5.40587 (* 1 = 5.40587 loss)
  1280. I0805 02:17:51.079339 3362 data_layer.cpp:73] Restarting data prefetching from start.
  1281. I0805 02:17:51.285264 3354 solver.cpp:219] Iteration 0 (1.26553e-25 iter/s, 2.33049s/20 iters), loss = 1.47625
  1282. I0805 02:17:51.285292 3354 solver.cpp:238] Train net output #0: loss = 1.47625 (* 1 = 1.47625 loss)
  1283. I0805 02:17:51.285316 3354 sgd_solver.cpp:105] Iteration 0, lr = 0.001
  1284. I0805 02:17:57.663884 3354 solver.cpp:219] Iteration 20 (3.13554 iter/s, 6.37849s/20 iters), loss = 1.09913
  1285. I0805 02:17:57.663913 3354 solver.cpp:238] Train net output #0: loss = 1.09913 (* 1 = 1.09913 loss)
  1286. I0805 02:17:57.663931 3354 sgd_solver.cpp:105] Iteration 20, lr = 0.001
  1287. I0805 02:17:58.142580 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1288. I0805 02:18:04.046460 3354 solver.cpp:219] Iteration 40 (3.13359 iter/s, 6.38245s/20 iters), loss = 1.19678
  1289. I0805 02:18:04.046488 3354 solver.cpp:238] Train net output #0: loss = 1.19678 (* 1 = 1.19678 loss)
  1290. I0805 02:18:04.046494 3354 sgd_solver.cpp:105] Iteration 40, lr = 0.001
  1291. I0805 02:18:06.158246 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1292. I0805 02:18:10.428968 3354 solver.cpp:219] Iteration 60 (3.13363 iter/s, 6.38238s/20 iters), loss = 1.18853
  1293. I0805 02:18:10.429024 3354 solver.cpp:238] Train net output #0: loss = 1.18853 (* 1 = 1.18853 loss)
  1294. I0805 02:18:10.429029 3354 sgd_solver.cpp:105] Iteration 60, lr = 0.001
  1295. I0805 02:18:14.424785 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1296. I0805 02:18:16.829213 3354 solver.cpp:219] Iteration 80 (3.12496 iter/s, 6.40009s/20 iters), loss = 1.17246
  1297. I0805 02:18:16.829241 3354 solver.cpp:238] Train net output #0: loss = 1.17246 (* 1 = 1.17246 loss)
  1298. I0805 02:18:16.829246 3354 sgd_solver.cpp:105] Iteration 80, lr = 0.001
  1299. I0805 02:18:22.450965 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1300. I0805 02:18:23.221148 3354 solver.cpp:219] Iteration 100 (3.12901 iter/s, 6.3918s/20 iters), loss = 1.12307
  1301. I0805 02:18:23.221177 3354 solver.cpp:238] Train net output #0: loss = 1.12307 (* 1 = 1.12307 loss)
  1302. I0805 02:18:23.221196 3354 sgd_solver.cpp:105] Iteration 100, lr = 0.001
  1303. I0805 02:18:29.610299 3354 solver.cpp:219] Iteration 120 (3.13025 iter/s, 6.38926s/20 iters), loss = 1.09175
  1304. I0805 02:18:29.610327 3354 solver.cpp:238] Train net output #0: loss = 1.09175 (* 1 = 1.09175 loss)
  1305. I0805 02:18:29.610332 3354 sgd_solver.cpp:105] Iteration 120, lr = 0.001
  1306. I0805 02:18:30.719750 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1307. I0805 02:18:36.019553 3354 solver.cpp:219] Iteration 140 (3.12035 iter/s, 6.40953s/20 iters), loss = 1.18237
  1308. I0805 02:18:36.019580 3354 solver.cpp:238] Train net output #0: loss = 1.18237 (* 1 = 1.18237 loss)
  1309. I0805 02:18:36.019599 3354 sgd_solver.cpp:105] Iteration 140, lr = 0.001
  1310. I0805 02:18:38.764142 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1311. I0805 02:18:42.429481 3354 solver.cpp:219] Iteration 160 (3.12003 iter/s, 6.4102s/20 iters), loss = 1.14376
  1312. I0805 02:18:42.429508 3354 solver.cpp:238] Train net output #0: loss = 1.14376 (* 1 = 1.14376 loss)
  1313. I0805 02:18:42.429527 3354 sgd_solver.cpp:105] Iteration 160, lr = 0.001
  1314. I0805 02:18:47.061050 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1315. I0805 02:18:48.836874 3354 solver.cpp:219] Iteration 180 (3.12126 iter/s, 6.40766s/20 iters), loss = 1.12219
  1316. I0805 02:18:48.836901 3354 solver.cpp:238] Train net output #0: loss = 1.12219 (* 1 = 1.12219 loss)
  1317. I0805 02:18:48.836906 3354 sgd_solver.cpp:105] Iteration 180, lr = 0.001
  1318. I0805 02:18:55.106952 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1319. I0805 02:18:55.252671 3354 solver.cpp:219] Iteration 200 (3.11718 iter/s, 6.41606s/20 iters), loss = 0.991293
  1320. I0805 02:18:55.252702 3354 solver.cpp:238] Train net output #0: loss = 0.991293 (* 1 = 0.991293 loss)
  1321. I0805 02:18:55.252722 3354 sgd_solver.cpp:105] Iteration 200, lr = 0.001
  1322. I0805 02:19:01.675238 3354 solver.cpp:219] Iteration 220 (3.11389 iter/s, 6.42282s/20 iters), loss = 1.00901
  1323. I0805 02:19:01.675266 3354 solver.cpp:238] Train net output #0: loss = 1.00901 (* 1 = 1.00901 loss)
  1324. I0805 02:19:01.675287 3354 sgd_solver.cpp:105] Iteration 220, lr = 0.001
  1325. I0805 02:19:03.417192 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1326. I0805 02:19:08.092980 3354 solver.cpp:219] Iteration 240 (3.11623 iter/s, 6.418s/20 iters), loss = 0.976785
  1327. I0805 02:19:08.093008 3354 solver.cpp:238] Train net output #0: loss = 0.976785 (* 1 = 0.976785 loss)
  1328. I0805 02:19:08.093014 3354 sgd_solver.cpp:105] Iteration 240, lr = 0.001
  1329. I0805 02:19:11.480767 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1330. I0805 02:19:14.534917 3354 solver.cpp:219] Iteration 260 (3.10453 iter/s, 6.44219s/20 iters), loss = 0.978768
  1331. I0805 02:19:14.534945 3354 solver.cpp:238] Train net output #0: loss = 0.978768 (* 1 = 0.978768 loss)
  1332. I0805 02:19:14.534965 3354 sgd_solver.cpp:105] Iteration 260, lr = 0.001
  1333. I0805 02:19:19.823832 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1334. I0805 02:19:20.977524 3354 solver.cpp:219] Iteration 280 (3.10421 iter/s, 6.44286s/20 iters), loss = 1.0599
  1335. I0805 02:19:20.977550 3354 solver.cpp:238] Train net output #0: loss = 1.0599 (* 1 = 1.0599 loss)
  1336. I0805 02:19:20.977569 3354 sgd_solver.cpp:105] Iteration 280, lr = 0.001
  1337. I0805 02:19:27.415933 3354 solver.cpp:219] Iteration 300 (3.10624 iter/s, 6.43866s/20 iters), loss = 0.888842
  1338. I0805 02:19:27.416128 3354 solver.cpp:238] Train net output #0: loss = 0.888842 (* 1 = 0.888842 loss)
  1339. I0805 02:19:27.416151 3354 sgd_solver.cpp:105] Iteration 300, lr = 0.001
  1340. I0805 02:19:27.902052 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1341. I0805 02:19:33.852607 3354 solver.cpp:219] Iteration 320 (3.10715 iter/s, 6.43676s/20 iters), loss = 0.975844
  1342. I0805 02:19:33.852635 3354 solver.cpp:238] Train net output #0: loss = 0.975844 (* 1 = 0.975844 loss)
  1343. I0805 02:19:33.852654 3354 sgd_solver.cpp:105] Iteration 320, lr = 0.001
  1344. I0805 02:19:35.978494 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1345. I0805 02:19:40.275147 3354 solver.cpp:219] Iteration 340 (3.11392 iter/s, 6.42278s/20 iters), loss = 0.933279
  1346. I0805 02:19:40.275174 3354 solver.cpp:238] Train net output #0: loss = 0.933279 (* 1 = 0.933279 loss)
  1347. I0805 02:19:40.275194 3354 sgd_solver.cpp:105] Iteration 340, lr = 0.001
  1348. I0805 02:19:44.293598 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1349. I0805 02:19:46.716472 3354 solver.cpp:219] Iteration 360 (3.10484 iter/s, 6.44156s/20 iters), loss = 0.960518
  1350. I0805 02:19:46.716506 3354 solver.cpp:238] Train net output #0: loss = 0.960518 (* 1 = 0.960518 loss)
  1351. I0805 02:19:46.716524 3354 sgd_solver.cpp:105] Iteration 360, lr = 0.001
  1352. I0805 02:19:52.412041 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1353. I0805 02:19:53.205533 3354 solver.cpp:219] Iteration 380 (3.082 iter/s, 6.48929s/20 iters), loss = 0.909624
  1354. I0805 02:19:53.205565 3354 solver.cpp:238] Train net output #0: loss = 0.909624 (* 1 = 0.909624 loss)
  1355. I0805 02:19:53.205585 3354 sgd_solver.cpp:105] Iteration 380, lr = 0.001
  1356. I0805 02:19:59.693739 3354 solver.cpp:219] Iteration 400 (3.08241 iter/s, 6.48843s/20 iters), loss = 0.821957
  1357. I0805 02:19:59.693917 3354 solver.cpp:238] Train net output #0: loss = 0.821957 (* 1 = 0.821957 loss)
  1358. I0805 02:19:59.693939 3354 sgd_solver.cpp:105] Iteration 400, lr = 0.001
  1359. I0805 02:20:00.816355 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1360. I0805 02:20:06.136162 3354 solver.cpp:219] Iteration 420 (3.10438 iter/s, 6.44252s/20 iters), loss = 0.957007
  1361. I0805 02:20:06.136193 3354 solver.cpp:238] Train net output #0: loss = 0.957007 (* 1 = 0.957007 loss)
  1362. I0805 02:20:06.136211 3354 sgd_solver.cpp:105] Iteration 420, lr = 0.001
  1363. I0805 02:20:08.895287 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1364. I0805 02:20:12.605448 3354 solver.cpp:219] Iteration 440 (3.09143 iter/s, 6.46951s/20 iters), loss = 0.939899
  1365. I0805 02:20:12.605476 3354 solver.cpp:238] Train net output #0: loss = 0.939899 (* 1 = 0.939899 loss)
  1366. I0805 02:20:12.605495 3354 sgd_solver.cpp:105] Iteration 440, lr = 0.001
  1367. I0805 02:20:17.296435 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1368. I0805 02:20:19.085794 3354 solver.cpp:219] Iteration 460 (3.08615 iter/s, 6.48057s/20 iters), loss = 0.858006
  1369. I0805 02:20:19.085822 3354 solver.cpp:238] Train net output #0: loss = 0.858006 (* 1 = 0.858006 loss)
  1370. I0805 02:20:19.085841 3354 sgd_solver.cpp:105] Iteration 460, lr = 0.001
  1371. I0805 02:20:25.370455 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1372. I0805 02:20:25.511584 3354 solver.cpp:219] Iteration 480 (3.11235 iter/s, 6.426s/20 iters), loss = 0.826491
  1373. I0805 02:20:25.511615 3354 solver.cpp:238] Train net output #0: loss = 0.826491 (* 1 = 0.826491 loss)
  1374. I0805 02:20:25.511634 3354 sgd_solver.cpp:105] Iteration 480, lr = 0.001
  1375. I0805 02:20:31.960383 3354 solver.cpp:219] Iteration 500 (3.10125 iter/s, 6.44901s/20 iters), loss = 0.767649
  1376. I0805 02:20:31.960554 3354 solver.cpp:238] Train net output #0: loss = 0.767649 (* 1 = 0.767649 loss)
  1377. I0805 02:20:31.960577 3354 sgd_solver.cpp:105] Iteration 500, lr = 0.001
  1378. I0805 02:20:33.766893 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1379. I0805 02:20:38.403030 3354 solver.cpp:219] Iteration 520 (3.10427 iter/s, 6.44273s/20 iters), loss = 0.809904
  1380. I0805 02:20:38.403059 3354 solver.cpp:238] Train net output #0: loss = 0.809904 (* 1 = 0.809904 loss)
  1381. I0805 02:20:38.403079 3354 sgd_solver.cpp:105] Iteration 520, lr = 0.001
  1382. I0805 02:20:41.798969 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1383. I0805 02:20:44.858299 3354 solver.cpp:219] Iteration 540 (3.09815 iter/s, 6.45547s/20 iters), loss = 0.744726
  1384. I0805 02:20:44.858327 3354 solver.cpp:238] Train net output #0: loss = 0.744726 (* 1 = 0.744726 loss)
  1385. I0805 02:20:44.858346 3354 sgd_solver.cpp:105] Iteration 540, lr = 0.001
  1386. I0805 02:20:50.157848 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1387. I0805 02:20:51.305193 3354 solver.cpp:219] Iteration 560 (3.10217 iter/s, 6.4471s/20 iters), loss = 0.758878
  1388. I0805 02:20:51.305222 3354 solver.cpp:238] Train net output #0: loss = 0.758878 (* 1 = 0.758878 loss)
  1389. I0805 02:20:51.305240 3354 sgd_solver.cpp:105] Iteration 560, lr = 0.001
  1390. I0805 02:20:57.777695 3354 solver.cpp:219] Iteration 580 (3.0899 iter/s, 6.4727s/20 iters), loss = 0.636537
  1391. I0805 02:20:57.777724 3354 solver.cpp:238] Train net output #0: loss = 0.636537 (* 1 = 0.636537 loss)
  1392. I0805 02:20:57.777745 3354 sgd_solver.cpp:105] Iteration 580, lr = 0.001
  1393. I0805 02:20:58.271718 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1394. I0805 02:21:04.231633 3354 solver.cpp:219] Iteration 600 (3.09879 iter/s, 6.45413s/20 iters), loss = 0.752477
  1395. I0805 02:21:04.231822 3354 solver.cpp:238] Train net output #0: loss = 0.752477 (* 1 = 0.752477 loss)
  1396. I0805 02:21:04.231869 3354 sgd_solver.cpp:105] Iteration 600, lr = 0.001
  1397. I0805 02:21:06.627866 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1398. I0805 02:21:07.148818 3354 solver.cpp:331] Iteration 610, Testing net (#0)
  1399. I0805 02:21:09.101388 3354 solver.cpp:398] Test net output #0: accuracy = 0.166296
  1400. I0805 02:21:09.101428 3354 solver.cpp:398] Test net output #1: loss = 2.17123 (* 1 = 2.17123 loss)
  1401. I0805 02:21:12.643909 3354 solver.cpp:219] Iteration 620 (2.37744 iter/s, 8.41239s/20 iters), loss = 0.724874
  1402. I0805 02:21:12.643936 3354 solver.cpp:238] Train net output #0: loss = 0.724874 (* 1 = 0.724874 loss)
  1403. I0805 02:21:12.643956 3354 sgd_solver.cpp:105] Iteration 620, lr = 0.001
  1404. I0805 02:21:16.677302 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1405. I0805 02:21:19.090366 3354 solver.cpp:219] Iteration 640 (3.10239 iter/s, 6.44665s/20 iters), loss = 0.696024
  1406. I0805 02:21:19.090395 3354 solver.cpp:238] Train net output #0: loss = 0.696024 (* 1 = 0.696024 loss)
  1407. I0805 02:21:19.090415 3354 sgd_solver.cpp:105] Iteration 640, lr = 0.001
  1408. I0805 02:21:24.768528 3361 data_layer.cpp:73] Restarting data prefetching from start.
  1409. I0805 02:21:25.534693 3354 solver.cpp:219] Iteration 660 (3.10342 iter/s, 6.44451s/20 iters), loss = 0.636167
  1410. I0805 02:21:25.534720 3354 solver.cpp:238] Train net output #0: loss = 0.636167 (* 1 = 0.636167 loss)
  1411. I0805 02:21:25.534725 3354 sgd_solver.cpp:105] Iteration 660, lr = 0.001
  1412. ^CI0805 02:21:26.827807 3354 solver.cpp:448] Snapshotting to binary proto file models/bvlc_alexnet/caffe_alexnet_sinatrain_iter_665.caffemodel
  1413. I0805 02:21:27.386745 3354 sgd_solver.cpp:273] Snapshotting solver state to binary proto file models/bvlc_alexnet/caffe_alexnet_sinatrain_iter_665.solverstate
  1414. I0805 02:21:27.628018 3354 solver.cpp:295] Optimization stopped early.
  1415. I0805 02:21:27.628033 3354 caffe.cpp:259] Optimization Done.
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement