Advertisement
karkas

Untitled

Nov 21st, 2013
72
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 18.20 KB | None | 0 0
  1. Bütün şifreler / all passes: [b]stoki[/b]
  2.  
  3. # http://rapidshare.com/files/106860618/MaSci_EnIntroCallis7E_stoki.part1.rar
  4. # http://rapidshare.com/files/106861163/MaSci_EnIntroCallis7E_stoki.part2.rar
  5. # http://rapidshare.com/files/106867941/MaSci_EnIntroCallis7E_stoki.part3.rar
  6. # http://rapidshare.com/files/106875398/MaSci_EnIntroCallis7E_stoki.part4.rar
  7.  
  8. Müellif: William D. Callister, Jr
  9.  
  10. Wiley / February 3, 2006
  11. ISBN 0471736967
  12.  
  13. PDF formatında 37 dosya, toplam 832 sayfa
  14. Dört parçalı rar dosyasının boyutu: 51300 x 3 + 50623 KB
  15.  
  16.  
  17. Alıntı:
  18. Description
  19.  
  20. Building on the extraordinary success of six best-selling editions, Bill Callister's new Seventh Edition of MATERIALS SCIENCE AND ENGINEERING: AN INTRODUCTION continues to promote student understanding of the three primary types of materials (!ls, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties.
  21.  
  22. Presents the fundamentals of materials and engineering on a level appropriate for college students. Deals with !llic materials and their alloys, ceramic materials, polymers, and composites. New updated third edition. DLC: Materials. (This text refers to the Hardcover edition.)
  23.  
  24. From the Publisher
  25.  
  26. The latest edition of this bestselling textbook treats the important properties of three primary types of material--!ls, ceramics, polymers--as well as composites. Describes the relationships that exist between the structural elements of these materials and their characteristics. Emphasizes mechanical behavior and failure along with techniques used to improve the mechanical and failure properties in terms of alteration of structural elements. Individual chapters discuss each of the corrosion, electrical, thermal, magnetic, and optical properties plus economic, environmental, and societal issues. Features a design component which includes design examples, case studies, and design type problems and questions. (This text refers to the Software edition.)
  27.  
  28. From the Back Cover
  29.  
  30. The leading source for learning materials science and engineering
  31. Bill Callister’s text is the number one choice for learning materials science and engineering. Why? Because it delivers lucid explanations, thorough and up-to-date coverage, and outstanding art and learning resources. Now revised, this 7th Edition continues to promote student understanding of the three primary types of materials (!ls, ceramics, and polymers) and composites, as well as the relationships between the structural elements of materials and their properties.
  32.  
  33. New to the Seventh Edition
  34.  
  35. * A number of new “Materials of Importance” pieces (for most chapters).
  36. * Concept Check questions throughout.
  37. * Revised illustrations, now all in full-color to enhance visualization and convey realism.
  38. * Expanded discussions on material types and general properties of materials (Chapter 1), and crystallographic directions and planes in hexagonal crystals (Chapter 3).
  39. * New discussions on one-component (pressure-temperature) phase diagrams, compacted graphite iron, lost foam casting, fractography of ceramics, and magnetic anisotropy.
  40. * Enhanced discussions on representations of polymer structures and defects in polymers, and a new discussion on permeability in polymers.
  41. * Revised coverage of deformation of semicrystalline polymers and polymerization.
  42.  
  43. About the Author: William D. Callister is currently an adjunct professor in the Department of Engineering at the University of Utah. His teaching interests include writing and revising introductory materials science and engineering textbooks, in both print and electronic formats. He also enjoys developing ancillary resources, including instructional software and on-line testing/evaluation tools.
  44.  
  45.  
  46. Contents:
  47.  
  48. HTML-Kodu:
  49.  
  50. Contents
  51.  
  52. List Of Symbols xxiii
  53.  
  54. 1. Introduction 1
  55. Learning Objectives 2
  56. 1.1 Historical Perspective 2
  57. 1.2 Materials Science and Engineering 3
  58. 1.3 Why Study Materials Science and Engineering? 5
  59. 1.4 Classification of Materials 5
  60. 1.5 Advanced Materials 11
  61. 1.6 Modern Materials’ Needs 12
  62.  
  63. 2. Atomic Structure and Interatomic Bonding 15
  64. Learning Objectives 16
  65. 2.1 Introduction 16
  66.  
  67. ATOMIC STRUCTURE 16
  68. 2.2 Fundamental Concepts 16
  69. 2.3 Electrons in Atoms 17
  70. 2.4 The Periodic Table 23
  71.  
  72. ATOMIC BONDING IN SOLIDS 24
  73. 2.5 Bonding Forces and Energies 24
  74. 2.6 Primary Interatomic Bonds 26
  75. 2.7 Secondary Bonding or van der Waals Bonding 30
  76. 2.8 Molecules 32
  77.  
  78. 3. The Structure of Crystalline Solids 38
  79. Learning Objectives 39
  80. 3.1 Introduction 39
  81.  
  82. CRYSTAL STRUCTURES 39
  83. 3.2 Fundamental Concepts 39
  84. 3.3 Unit Cells 40
  85. 3.4 !llic Crystal Structures 41
  86. 3.5 Density Computations 45
  87. 3.6 Polymorphism and Allotropy 46
  88. 3.7 Crystal Systems 46
  89.  
  90. CRYSTALLOGRAPHIC POINTS, DIRECTIONS, AND PLANES 49
  91. 3.8 Point Coordinates 49
  92. 3.9 Crystallographic Directions 51
  93. 3.10 Crystallographic Planes 55
  94. 3.11 Linear and Planar Densities 60
  95. 3.12 Close-Packed Crystal Structures 61
  96.  
  97. CRYSTALLINE AND NONCRYSTALLINE MATERIALS 63
  98. 3.13 Single Crystals 63
  99. 3.14 Polycrystalline Materials 64
  100. 3.15 Anisotropy 64
  101. 3.16 X-Ray Diffraction: Determination of Crystal Structures 66
  102. 3.17 Noncrystalline Solids 71
  103.  
  104. 4. Imperfections in Solids 80
  105. Learning Objectives 81
  106. 4.1 Introduction 81
  107.  
  108. POINT DEFECTS 81
  109. 4.2 Vacancies and Self-Interstitials 81
  110. 4.3 Impurities in Solids 83
  111. 4.4 Specification of Composition 85
  112.  
  113. MISCELLANEOUS IMPERFECTIONS 88
  114. 4.5 Dislocations–Linear Defects 88
  115. 4.6 Interfacial Defects 92
  116. 4.7 Bulk or Volume Defects 96
  117. 4.8 Atomic Vibrations 96
  118.  
  119. MICROSCOPIC EXAMINATION 97
  120. 4.9 General 97
  121. 4.10 Microscopic Techniques 98
  122. 4.11 Grain Size Determination 102
  123.  
  124. 5. Diffusion 109
  125. Learning Objectives 110
  126. 5.1 Introduction 110
  127. 5.2 Diffusion Mechanisms 111
  128. 5.3 Steady-State Diffusion 112
  129. 5.4 Nonsteady-State Diffusion 114
  130. 5.5 Factors That Influence Diffusion 118
  131. 5.6 Other Diffusion Paths 125
  132.  
  133. 6. Mechanical Properties of !ls 131
  134. Learning Objectives 132
  135. 6.1 Introduction 132
  136. 6.2 Concepts of Stress and Strain 133
  137.  
  138. ELASTIC DEFORMATION 137
  139. 6.3 Stress-Strain Behavior 137
  140. 6.4 Anelasticity 140
  141. 6.5 Elastic Properties of Materials 141
  142.  
  143. PLASTIC DEFORMATION 143
  144. 6.6 Tensile Properties 144
  145. 6.7 True Stress and Strain 151
  146. 6.8 Elastic Recovery after Plastic Deformation 154
  147. 6.9 Compressive, Shear, and Torsional Deformation 154
  148. 6.10 Hardness 155
  149.  
  150. PROPERTY VARIABILITY AND DESIGN/SAFETY FACTORS 161
  151. 6.11 Variability of Material Properties 161
  152. 6.12 Design/Safety Factors 163
  153.  
  154. 7. Dislocations and Strengthening Mechanisms 174
  155. Learning Objectives 175
  156. 7.1 Introduction 175
  157.  
  158. DISLOCATIONS AND PLASTIC DEFORMATION 175
  159. 7.2 Basic Concepts 175
  160. 7.3 Characteristics of Dislocations 178
  161. 7.4 Slip Systems 179
  162. 7.5 Slip in Single Crystals 181
  163. 7.6 Plastic Deformation of Polycrystalline Materials 185
  164. 7.7 Deformation by Twinning 185
  165.  
  166. MECHANISMS OF STRENGTHENING IN !LS 188
  167. 7.8 Strengthening by Grain Size Reduction 188
  168. 7.9 Solid-Solution Strengthening 190
  169. 7.10 Strain Hardening 191
  170.  
  171. RECOVERY, RECRYSTALLIZATION, AND GRAIN GROWTH 194
  172. 7.11 Recovery 195
  173. 7.12 Recrystallization 195
  174. 7.13 Grain Growth 200
  175.  
  176. 8. Failure 207
  177. Learning Objectives 208
  178. 8.1 Introduction 208
  179.  
  180. FRACTURE 208
  181. 8.2 Fundamentals of Fracture 208
  182. 8.3 Ductile Fracture 209
  183. 8.4 Brittle Fracture 211
  184. 8.5 Principles of Fracture Mechanics 215
  185. 8.6 Impact Fracture Testing 223
  186.  
  187. FATIGUE 227
  188. 8.7 Cyclic Stresses 228
  189. 8.8 The S–N Curve 229
  190. 8.9 !k Initiation and Propagation 232
  191. 8.10 Factors That Affect Fatigue Life 234
  192. 8.11 Environmental Effects 237
  193.  
  194. CREEP 238
  195. 8.12 Generalized Creep Behavior 238
  196. 8.13 Stress and Temperature Effects 239
  197. 8.14 Data Extrapolation Methods 241
  198. 8.15 Alloys for High-Temperature
  199. Use 242
  200.  
  201. 9. Phase Diagrams 252
  202. Learning Objectives 253
  203. 9.1 Introduction 253
  204.  
  205. DEFINITIONS AND BASIC CONCEPTS 253
  206. 9.2 Solubility Limit 254
  207. 9.3 Phases 254
  208. 9.4 Microstructure 255
  209. 9.5 Phase Equilibria 255
  210. 9.6 One-Component (or Unary) Phase Diagrams 256
  211.  
  212. BINARY PHASE DIAGRAMS 258
  213. 9.7 Binary Isomorphous Systems 258
  214. 9.8 Interpretation of Phase Diagrams 260
  215. 9.9 Development of Microstructure in Isomorphous Alloys 264
  216. 9.10 Mechanical Properties of Isomorphous Alloys 268
  217. 9.11 Binary Eutectic Systems 269
  218. 9.12 Development of Microstructure in Eutectic Alloys 276
  219. 9.13 Equilibrium Diagrams Having Intermediate Phases or Compounds 282
  220. 9.14 Eutectic and Peritectic Reactions 284
  221. 9.15 Congruent Phase Transformations 286
  222. 9.16 Ceramic and Ternary Phase Diagrams 287
  223. 9.17 The Gibbs Phase Rule 287
  224.  
  225. THE IRON–CARBON SYSTEM 290
  226. 9.18 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram 290
  227. 9.19 Development of Microstructure in Iron–Carbon Alloys 293
  228. 9.20 The Influence of Other Alloying Elements 301
  229.  
  230. 10. Phase Transformations in !ls: Development of Microstructure and Alteration of Mechanical Properties 311
  231. Learning Objectives 312
  232. 10.1 Introduction 312
  233.  
  234. PHASE TRANSFORMATIONS 312
  235. 10.2 Basic Concepts 312
  236. 10.3 The Kinetics of Phase
  237. Transformations 313
  238. 10.4 !stable versus Equilibrium States 324
  239.  
  240. MICROSTRUCTURAL AND PROPERTY CHANGES IN IRON–CARBON ALLOYS 324
  241. 10.5 Isothermal Transformation Diagrams 325
  242. 10.6 Continuous Cooling Transformation Diagrams 335
  243. 10.7 Mechanical Behavior of Iron–Carbon Alloys 339
  244. 10.8 Tempered Martensite 343
  245. 10.9 Review of Phase Transformations and Mechanical Properties for Iron–Carbon Alloys 346
  246.  
  247. 11. Applications and Processing of !l Alloys 358
  248. Learning Objectives 359
  249. 11.1 Introduction 359
  250.  
  251. TYPES OF !L ALLOYS 359
  252. 11.2 Ferrous Alloys 359
  253. 11.3 Nonferrous Alloys 372
  254.  
  255. FABRICATION OF !LS 382
  256. 11.4 Forming Operations 383
  257. 11.5 Casting 384
  258. 11.6 Miscellaneous Techniques 386
  259.  
  260. THERMAL PROCESSING OF !LS 387
  261. 11.7 Annealing Processes 388
  262. 11.8 Heat Treatment of Steels 390
  263. 11.9 Precipitation Hardening 402
  264.  
  265. 12. Structures and Properties of Ceramics 414
  266. Learning Objectives 415
  267. 12.1 Introduction 415
  268.  
  269. CERAMIC STRUCTURES 415
  270. 12.2 Crystal Structures 415
  271. 12.3 Silicate Ceramics 426
  272. 12.4 Carbon 430
  273. 12.5 Imperfections in Ceramics 434
  274. 12.6 Diffusion in Ionic Materials 438
  275. 12.7 Ceramic Phase Diagrams 439
  276.  
  277. MECHANICAL PROPERTIES 442
  278. 12.8 Brittle Fracture of Ceramics 442
  279. 12.9 Stress–Strain Behavior 447
  280. 12.10 Mechanisms of Plastic Deformation 449
  281. 12.11 Miscellaneous Mechanical Considerations 451
  282.  
  283. 13. Applications and Processing of Ceramics 460
  284. Learning Objectives 461
  285. 13.1 Introduction 461
  286.  
  287. TYPES AND APPLICATIONS OF CERAMICS 461
  288. 13.2 Glasses 461
  289. 13.3 Glass–Ceramics 462
  290. 13.4 Clay Products 463
  291. 13.5 Refractories 464
  292. 13.6 Abrasives 466
  293. 13.7 Cements 467
  294. 13.8 Advanced Ceramics 468
  295.  
  296. FABRICATION AND PROCESSING OF CERAMICS 471
  297. 13.9 Fabrication and Processing of Glasses and Glass–Ceramics 471
  298. 13.10 Fabrication and Processing of Clay Products 476
  299. 13.11 Powder Pressing 481
  300. 13.12 Tape Casting 484
  301.  
  302. 14. Polymer Structures 489
  303. Learning Objectives 490
  304. 14.1 Introduction 490
  305. 14.2 Hydrocarbon Molecules 490
  306. 14.3 Polymer Molecules 492
  307. 14.4 The Chemistry of Polymer Molecules 493
  308. 14.5 Molecular Weight 497
  309. 14.6 Molecular Shape 500
  310. 14.7 Molecular Structure 501
  311. 14.8 Molecular Configurations 503
  312. 14.9 Thermoplastic and Thermosetting Polymers 506
  313. 14.10 Copolymers 507
  314. 14.11 Polymer Crystallinity 508
  315. 14.12 Polymer Crystals 512
  316. 14.13 Defects in Polymers 514
  317. 14.14 Diffusion in Polymeric Materials 515
  318.  
  319. 15. Characteristics, Applications, and Processing of Polymers 523
  320. Learning Objectives 524
  321. 15.1 Introduction 524
  322.  
  323. MECHANICAL BEHAVIOR OF POLYMERS 524
  324. 15.2 Stress–Strain Behavior 524
  325. 15.3 Macroscopic Deformation 527
  326. 15.4 Viscoelastic Deformation 527
  327. 15.5 Fracture of Polymers 532
  328. 15.6 Miscellaneous Mechanical Characteristics 533
  329.  
  330. MECHANISMS OF DEFORMATION AND FOR STRENGTHENING OF POLYMERS 535
  331. 15.7 Deformation of Semicrystalline Polymers 535
  332. 15.8 Factors That Influence the Mechanical Properties of Semicrystalline Polymers 538
  333. 15.9 Deformation of Elastomers 541
  334.  
  335. CRYSTALLIZATION, MELTING, AND GLASS TRANSITION PHENOMENA IN POLYMERS 544
  336. 15.10 Crystallization 544
  337. 15.11 Melting 545
  338. 15.12 The Glass Transition 545
  339. 15.13 Melting and Glass Transition Temperatures 546
  340. 15.14 Factors That Influence Melting and Glass Transition Temperatures 547
  341.  
  342. POLYMER TYPES 549
  343. 15.15 Plastics 549
  344. 15.16 Elastomers 552
  345. 15.17 Fibers 554
  346. 15.18 Miscellaneous Applications 555
  347. 15.19 Advanced Polymeric Materials 556
  348.  
  349. POLYMER SYNTHESIS AND PROCESSING 560
  350. 15.20 Polymerization 561
  351. 15.21 Polymer Additives 563
  352. 15.22 Forming Techniques for Plastics 565
  353. 15.23 Fabrication of Elastomers 567
  354. 15.24 Fabrication of Fibers and Films 568
  355.  
  356. 16. Composites 577
  357. Learning Objectives 578
  358. 16.1 Introduction 578
  359.  
  360. PARTICLE-REINFORCED COMPOSITES 580
  361. 16.2 Large-Particle Composites 580
  362. 16.3 Dispersion-Strengthened
  363. Composites 584
  364.  
  365. FIBER-REINFORCED COMPOSITES 585
  366. 16.4 Influence of Fiber Length 585
  367. 16.5 Influence of Fiber Orientation and Concentration 586
  368. 16.6 The Fiber Phase 595
  369. 16.7 The Matrix Phase 596
  370. 16.8 Polymer-Matrix Composites 597
  371. 16.9 !l-Matrix Composites 603
  372. 16.10 Ceramic-Matrix Composites 605
  373. 16.11 Carbon–Carbon Composites 606
  374. 16.12 Hybrid Composites 607
  375. 16.13 Processing of Fiber-Reinforced Composites 607
  376.  
  377. STRUCTURAL COMPOSITES 610
  378. 16.14 Laminar Composites 610
  379. 16.15 Sandwich Panels 611
  380.  
  381. 17. Corrosion and Degradation of Materials 621
  382. Learning Objectives 622
  383. 17.1 Introduction 622
  384.  
  385. CORROSION OF !LS 622
  386. 17.2 Electrochemical Considerations 623
  387. 17.3 Corrosion Rates 630
  388. 17.4 Prediction of Corrosion Rates 631
  389. 17.5 Passivity 638
  390. 17.6 Environmental Effects 640
  391. 17.7 Forms of Corrosion 640
  392. 17.8 Corrosion Environments 648
  393. 17.9 Corrosion Prevention 649
  394. 17.10 Oxidation 651
  395.  
  396. CORROSION OF CERAMIC MATERIALS 654
  397.  
  398. DEGRADATION OF POLYMERS 655
  399. 17.11 Swelling and Dissolution 655
  400. 17.12 Bond Rupture 657
  401. 17.13 Weathering 658
  402.  
  403. 18. Electrical Properties 665
  404. Learning Objectives 666
  405. 18.1 Introduction 666
  406.  
  407. ELECTRICAL CONDUCTION 666
  408. 18.2 Ohm’s Law 666
  409. 18.3 Electrical Conductivity 667
  410. 18.4 Electronic and Ionic Conduction 668
  411. 18.5 Energy Band Structures in Solids 668
  412. 18.6 Conduction in Terms of Band and Atomic Bonding Models 671
  413. 18.7 Electron Mobility 673
  414. 18.8 Electrical Resistivity of !ls 674
  415. 18.9 Electrical Characteristics of Commercial Alloys 677
  416.  
  417. SEMICONDUCTIVITY 679
  418. 18.10 Intrinsic Semiconduction 679
  419. 18.11 Extrinsic Semiconduction 682
  420. 18.12 The Temperature Dependence of Carrier Concentration 686
  421. 18.13 Factors That Affect Carrier Mobility 688
  422. 18.14 The Hall Effect 692
  423. 18.15 Semiconductor Devices 694
  424.  
  425. ELECTRICAL CONDUCTION IN IONIC CERAMICS AND IN POLYMERS 700
  426. 18.16 Conduction in Ionic Materials 701
  427. 18.17 Electrical Properties of Polymers 701
  428.  
  429. DIELECTRIC BEHAVIOR 702
  430. 18.18 Capacitance 703
  431. 18.19 Field Vectors and Polarization 704
  432. 18.20 Types of Polarization 708
  433. 18.21 Frequency Dependence of the Dielectric Constant 709
  434. 18.22 Dielectric Strength 711
  435. 18.23 Dielectric Materials 711
  436.  
  437. OTHER ELECTRICAL CHARACTERISTICS OF MATERIALS 711
  438. 18.24 Ferroelectricity 711
  439. 18.25 Piezoelectricity 712
  440.  
  441. 19. Thermal Properties W1
  442. Learning Objectives W2
  443. 19.1 Introduction W2
  444. 19.2 Heat Capacity W2
  445. 19.3 Thermal Expansion W4
  446. 19.4 Thermal Conductivity W7
  447. 19.5 Thermal Stresses W12
  448.  
  449. 20. Magnetic Properties W19
  450. Learning Objectives W20
  451. 20.1 Introduction W20
  452. 20.2 Basic Concepts W20
  453. 20.3 Diamagnetism and Paramagnetism W24
  454. 20.4 Ferromagnetism W26
  455. 20.5 Antiferromagnetism and Ferrimagnetism W28
  456. 20.6 The Influence of Temperature on Magnetic Behavior W32
  457. 20.7 Domains and Hysteresis W33
  458. 20.8 Magnetic Anisotropy W37
  459. 20.9 Soft Magnetic Materials W38
  460. 20.10 Hard Magnetic Materials W41
  461. 20.11 Magnetic Storage W44
  462. 20.12 Superconductivity W47
  463.  
  464. 21. Optical Properties W57
  465. Learning Objectives W58
  466. 21.1 Introduction W58
  467.  
  468. BASIC CONCEPTS W58
  469. 21.2 Electromagnetic Radiation W58
  470. 21.3 Light Interactions with Solids W60
  471. 21.4 Atomic and Electronic Interactions W61
  472.  
  473. OPTICAL PROPERTIES OF !LS W62
  474.  
  475. OPTICAL PROPERTIES OF NON!LS W63
  476. 21.5 Refraction W63
  477. 21.6 Reflection W65
  478. 21.7 Absorption W65
  479. 21.8 Transmission W68
  480. 21.9 Color W69
  481. 21.10 Opacity and Translucency in Insulators W71
  482.  
  483. APPLICATIONS OF OPTICAL PHENOMENA W72
  484. 21.11 Luminescence W72
  485. 21.12 Photoconductivity W72
  486. 21.13 Lasers W75
  487. 21.14 Optical Fibers in Communications W79
  488.  
  489. 22. Materials Selection and Design Considerations W86
  490. Learning Objectives W87
  491. 22.1 Introduction W87
  492.  
  493. MATERIALS SELECTION FOR A TORSIONALLY STRESSED CYLINDRICAL SHAFT W87
  494. 22.2 Strength Considerations–Torsionally Stressed Shaft W88
  495. 22.3 Other Property Considerations and the Final Decision W93
  496.  
  497. AUTOMOTIVE VALVE SPRING W94
  498. 22.4 Mechanics of Spring Deformation W94
  499. 22.5 Valve Spring Design and Material Requirements W95
  500. 22.6 One Commonly Employed Steel Alloy W98
  501.  
  502. FAILURE OF AN AUTOMOBILE REAR AXLE W101
  503. 22.7 Introduction W101
  504. 22.8 Testing Procedure and Results W102
  505. 22.9 Discussion W108
  506.  
  507. ARTIFICIAL TOTAL HIP REPLACEMENT W108
  508. 22.10 Anatomy of the Hip Joint W108
  509. 22.11 Material Requirements W111
  510. 22.12 Materials Employed W112
  511.  
  512. CHEMICAL PROTECTIVE CLOTHING W115
  513. 22.13 Introduction W115
  514. 22.14 Assessment of CPC Glove Materials to Protect Against Exposure to Methylene Chloride W115
  515.  
  516. MATERIALS FOR INTEGRATED CIRCUIT PACKAGES W119
  517. 22.15 Introduction W119
  518. 22.16 Leadframe Design and Materials W120
  519. 22.17 Die Bonding W121
  520. 22.18 Wire Bonding W124
  521. 22.19 Package Encapsulation W125
  522. 22.20 Tape Automated Bonding W127
  523.  
  524. 23. Economic, Environmental, and Societal Issues in Materials Science and Engineering W135
  525. Learning Objectives W136
  526. 23.1 Introduction W136
  527.  
  528. ECONOMIC CONSIDERATIONS W136
  529. 23.2 Component Design W137
  530. 23.3 Materials W137
  531. 23.4 Manufacturing Techniques W137
  532.  
  533. ENVIRONMENTAL AND SOCIETAL CONSIDERATIONS W137
  534. 23.5 Recycling Issues in Materials Science and Engineering W140
  535.  
  536. Appendix A The International System of Units A1
  537.  
  538. Appendix B Properties of Selected Engineering Materials A3
  539. B.1 Density A3
  540. B.2 Modulus of Elasticity A6
  541. B.3 Poisson’s Ratio A10
  542. B.4 Strength and Ductility A11
  543. B.5 Plane Strain Fracture Toughness A16
  544. B.6 Linear Coefficient of Thermal Expansion A17
  545. B.7 Thermal Conductivity A21
  546. B.8 Specific Heat A24
  547. B.9 Electrical Resistivity A26
  548. B.10 !l Alloy Compositions A29
  549.  
  550. Appendix C Costs and Relative Costs for Selected Engineering Materials A31
  551.  
  552. Appendix D Repeat Unit Structures for Common Polymers A37
  553.  
  554. Appendix E Glass Transition and Melting Temperatures for Common Polymeric Materials A41
  555.  
  556. Glossary G0
  557.  
  558. Answers to Selected Problems S1
  559.  
  560. Index I1
  561.  
  562.  
  563.  
  564. Bütün şifreler / all passes: [b]stoki[/b]
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement