Advertisement
Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import tensorflow as tf
- import numpy as np
- gpus = tf.config.experimental.list_physical_devices('GPU')
- if gpus:
- try:
- for gpu in gpus:
- tf.config.experimental.set_memory_growth(gpu, True)
- except RuntimeError as e:
- print(e)
- bsize = 500
- (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
- x_train = (x_train/255).astype('float32')
- x_test = (x_test/255).astype('float32')
- n_classes = np.max(y_train)+1
- train_dset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(bsize)
- test_dset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(bsize)
- mod = tf.keras.applications.resnet_v2.ResNet50V2(weights=None,
- input_shape = x_train.shape[1:],
- include_top = True,
- classes = n_classes,
- classifier_activation='softmax')
- mod.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
- #import pdb; pdb.set_trace()
- mod.fit(train_dset, validation_data = test_dset, epochs = 8)
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement