Advertisement
Guest User

Modified python code

a guest
Apr 4th, 2010
361
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 1.19 KB | None | 0 0
  1. #!/usr/bin/env python
  2.  
  3. from numpy.random import randn
  4. from numpy import sqrt,row_stack,array,dot,transpose,sum,zeros,inner,zeros,mean,float32
  5. def GMMGaussianMC(N=100):  
  6.     T=100;mu=0.1;sigma=0.2  
  7.     invT = 1./T
  8.     coverage=zeros((2,N),dtype=int)  
  9.     d = array([[-1,0],[0,0]],dtype=float32)
  10.     xmat = mu + sigma*randn(T,N)
  11.     muhats =  invT * sum(xmat, axis=0)
  12.     f1s = xmat - muhats
  13.     sigma_hats = sqrt(invT * sum(f1s**2,axis=0))
  14.     f2s = f1s**2 - sigma_hats**2
  15.     f = row_stack((f1s,f2s))
  16.     for n in xrange(0,N-1):
  17.     #d is now inv(d) as it is easy to compute
  18.         d[1,1] = (-2*sigma_hats[n])
  19.         temp = f[:,n].reshape(2,T)
  20.      
  21.         S=invT*inner(temp,temp)
  22.         V=dot(dot(d,S),d)
  23.      
  24.         SE_mu = sqrt(invT*V[0,0])  
  25.         SE_sigma = sqrt(invT*V[1,1])    
  26.         coverage[0,n]=(abs(muhats[n]-mu)<1.96*SE_mu)  
  27.         coverage[1,n]=(abs(sigma_hats[n]-sigma)<1.96*SE_sigma)  
  28.     y=mean(coverage,axis=1)  
  29.     return y  
  30.    
  31. if __name__=='__main__':    
  32.     #import cProfile  
  33.     #cProfile.run('GMMGaussianMC(100000)','prof_jason.dat')  
  34.     import time  
  35.     t1=time.time()  
  36.     y=GMMGaussianMC(100000)  
  37.     print time.time()-t1
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement