MatsGranvik

zeta zeros one by one maybe, with sqrt(-1) as the constant seed point

Nov 20th, 2021 (edited)
117
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 1.81 KB | None | 0 0
  1. I now skipped the zeta zero asymptotic as varying seed points
  2. and instead used s=Sqrt[-1] as the constant seed point as input to
  3. the ratio of consecutive higher order derivatives
  4. of the Riemann zeta function:
  5.  
  6. (*Mathematica start,takes a minute to run*)
  7. Clear[f, s, rho, n, k, x, m];
  8. m = 0;(*try setting:m=0,m=1,m=2,m=3,m=4,...*)
  9. f[x_] := Zeta[x]/Sin[Pi*x/2]/
  10. Product[(x - ZetaZero[j])*(x - ZetaZero[-j]), {j, 1, m}];
  11. s = I;
  12. n = 170;
  13. Block[{$MaxExtraPrecision = 500},
  14. rho = N[(1/(1 -
  15. Sum[((-1)^(k - 1)*Binomial[n - 1, k - 1])/
  16. f[k/n + s - 1/n], {k, 1, n}]/
  17. Sum[((-1)^(k - 1)*Binomial[n - 1, k - 1])/f[k/n + s], {k, 1,
  18. n}]) + s), 20]]
  19. f[rho]
  20. (*end*)
  21.  
  22. By changing the integer variable "m" the program
  23. recursively factors out the zeta zeros and seems to give the
  24. zeta zeros in order.
  25.  
  26. m=0; "gives:"
  27. 0.500000000809315424 + 14.134725141999078436 I
  28. m=1; "gives:"
  29. 0.500003240725315219 + 21.022038108654950356 I
  30. m=2; "gives:"
  31. 0.500044971947739555 + 25.010893102992784503 I
  32. m=3; "gives:"
  33. 0.500605374548171145 + 30.424287649143723384 I
  34. m=4; "gives:"
  35. 0.500830274970246344 + 32.936917518238269262 I
  36. m=5; "gives:"
  37. 0.507131688601683165 + 37.583075616295391706 I
  38.  
  39. although to decreasing precision.
  40.  
  41. Increasing "n=170" should give more decimal digits,
  42. but I don't have the computing power to try.
  43.  
  44.  
  45.  
  46. (*Mathematica start,takes a few minutes to run*)
  47. Clear[f, s, rho, n, k, x, m];
  48. Do[
  49. f[x_] :=
  50. Zeta[x]/Sin[Pi*x/2]/
  51. Product[(x - ZetaZero[j])*(x - ZetaZero[-j]), {j, 1, m}];
  52. n = 170;
  53. Print[Block[{$MaxExtraPrecision = 500},
  54. rho = N[(1/(1 -
  55. Sum[((-1)^(k - 1)*Binomial[n - 1, k - 1])/
  56. f[k/n + I - 1/n], {k, 1, n}]/
  57. Sum[((-1)^(k - 1)*Binomial[n - 1, k - 1])/f[k/n + I], {k,
  58. 1, n}]) + I), 20]]], {m, 0, 4}]
  59. (*end*)
Add Comment
Please, Sign In to add comment