MatsGranvik

zeta zeros root form

Aug 8th, 2021 (edited)
378
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 3.53 KB | None | 0 0
  1. (*start*)
  2. Clear[number, log1, log2, log3, log4, s, x, X, h, n, k];
  3. $MaxRootDegree = 2000
  4. number = 100;
  5. integer = 0;
  6. m = 200;
  7. s = Table[
  8. number*(2*Pi*I*integer -
  9. Log[Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
  10. k]]), {k, 1, Round[Log[m]*number]}];
  11. Block[{$MaxExtraPrecision = 100},
  12. N[Sum[(-1)^(n + 1)*1/(E^(Round[Log[n]*number]/number))^s, {n, 1, m}]]]
  13. N[Round[%, 10^-2]]
  14. N[s]
  15. Sort[Re[%]]
  16. ListLinePlot[%]
  17. (*end*)
  18.  
  19.  
  20. (*start*)
  21. Clear[number, log1, log2, log3, log4, s, x, X, h, n, k];
  22. $MaxRootDegree = 2000
  23. number = 100;
  24. integer = 0;
  25. m = 2000;
  26. s = Table[
  27. number*(2*Pi*I*integer -
  28. Log[Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
  29. k]]), {k, 50, 50 + 5 + Round[Log[m]*number]*0}];
  30. N[%, 12]
  31. (*end*)
  32.  
  33. number*(2*Pi*I*integer -
  34. Log[Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
  35. k]])
  36.  
  37.  
  38.  
  39. (* later 9 8 2021 *)
  40. (*start*)Clear[number, log1, log2, log3, log4, s, x, X, h, n, k];
  41. number = 120;
  42. integer = 0;
  43. m = 100;
  44. $MaxRootDegree = Round[Log[m]*number] + 10
  45. $MaxExtraPrecision = Round[Log[m]*number] + 50
  46. Sum[(-1)^(n + 1)*1/(E^(Log[n]))^s, {n, 1, m}]
  47. s = ParallelTable[
  48. number*(If[k == 1, Pi*I, 0] + 2*Pi*I*integer -
  49. Log[If[k == 1, -1, 1]*
  50. Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
  51. k]]), {k, 1, Round[Log[m]*number]}];
  52. Block[{$MaxExtraPrecision = 300},
  53. N[Sum[(-1)^(n + 1)*1/(E^(Round[Log[n]*number]/number))^s, {n, 1, m}],
  54. 20]]
  55. N[Round[%]]
  56. N[s]
  57. Sort[Re[%]]
  58. ListLinePlot[%]
  59. (*end*)
  60.  
  61. (* start *)
  62.  
  63. (* fungerande 27 12 2021 *)
  64. Clear[number, log1, log2, log3, log4];
  65. number = 12;
  66. log1 = 0
  67. log2 = Round[2/2*number]/number
  68. log3 = Round[2/3*number]/number
  69. log4 = Round[2/4*number]/number
  70. gcd = GCD[log1, log2, log3, log4]
  71. integer = 0;
  72. s = 1/gcd*(2*Pi*I*integer -
  73. Log[Root[#1^(log1/gcd) + #1^(log2/gcd) + #1^(log3/gcd) + #1^(log4/
  74. gcd) &, 1]])
  75. N[1 + 1/(E^(log2))^s + 1/(E^(log3))^s + 1/(E^(log4))^s]
  76.  
  77. (* end *)
  78. "Output:"
  79. -2.22045*10^-16 + 1.11022*10^-16 I
  80.  
  81.  
  82. "Added 7 1 2023"
  83.  
  84. (*start*)c = 100;
  85. x = N[Exp[-ZetaZero[1]/c], 100]
  86. Sum[(-1)^k*x^(Log[k]*c), {k, 1, Infinity}]
  87. (*end*)
  88.  
  89. "I managed to run the program with the c=2;
  90. " c " should be greater than Im[ZetaZero[1]]/Pi
  91. but already c=3 is too large to make to program
  92. run to the end."
  93.  
  94. (*start*)
  95. Clear[h, x, k, s, s1, nn, m, c];
  96. $MaxRootDegree = 2000;
  97. c = 2
  98. m = 10;(*m must be an even integer and greater than 4*)h = 200;
  99. gcd = GCD @@ Table[Round[c*Log[n]*h]/h, {n, 1, m}]
  100. Table[Round[c*Log[n]*h]/h, {n, 1, m}]/gcd
  101. r = 100;
  102. integer = 0;
  103. s = 1/gcd*(2*Pi*I*integer -
  104. Log[Root[
  105. Sum[(-1)^(n + 1) #1^(Round[c*Log[n]*h]/h/gcd), {n, 1, m}] &, r]])
  106. N[s, 80]
  107. N[Sum[(-1)^(n + 1)/(E^(c*Round[Log[n]*h]/h))^s, {n, 1, m}]]
  108. s1 = 1/gcd*(2*Pi*I*integer -
  109. Log[Root[
  110. polynomial =
  111. Sum[Sum[#1^k, {k, Round[c*Log[m - (2*q - 1)]*h]/h/gcd,
  112. Round[c*Log[m - (2*q - 2)]*h]/h/gcd - 1}], {q, 1, m/2}] &,
  113. r - 1]])
  114. N[s1, 80]
  115. N[Sum[(-1)^(n + 1)/(E^(Round[c*Log[n]*h]/h))^s1, {n, 1, m}]]
  116. (*end*)
  117.  
  118. (*start*)
  119. m = 20;
  120. h = 200;
  121. sort = Sort[
  122. Flatten[Table[
  123. Table[k, {k, Round[c*Log[m - (2*q - 1)]*h]/h/gcd,
  124. Round[c*Log[m - (2*q - 2)]*h]/h/gcd - 1}], {q, 1, m/2}]]]
  125. "Plot of exponents of polynomial"
  126. ListLinePlot[sort]
  127. "Plot of coefficients of polynomial"
  128. ListPlot[Sum[
  129. Table[If[sort[[n]] == k, 1, 0], {k, 1, Max[sort]}], {n, 1,
  130. Length[sort]}], Filling -> 0]
  131. (*end*)
  132.  
  133. (*start*)
  134. Plot[(1 + SquareWave[Exp[x]])/2, {x, 0, 2}, ExclusionsStyle -> Dotted]
  135. (*end*)
Advertisement
Add Comment
Please, Sign In to add comment