Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- (*start*)
- Clear[number, log1, log2, log3, log4, s, x, X, h, n, k];
- $MaxRootDegree = 2000
- number = 100;
- integer = 0;
- m = 200;
- s = Table[
- number*(2*Pi*I*integer -
- Log[Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
- k]]), {k, 1, Round[Log[m]*number]}];
- Block[{$MaxExtraPrecision = 100},
- N[Sum[(-1)^(n + 1)*1/(E^(Round[Log[n]*number]/number))^s, {n, 1, m}]]]
- N[Round[%, 10^-2]]
- N[s]
- Sort[Re[%]]
- ListLinePlot[%]
- (*end*)
- (*start*)
- Clear[number, log1, log2, log3, log4, s, x, X, h, n, k];
- $MaxRootDegree = 2000
- number = 100;
- integer = 0;
- m = 2000;
- s = Table[
- number*(2*Pi*I*integer -
- Log[Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
- k]]), {k, 50, 50 + 5 + Round[Log[m]*number]*0}];
- N[%, 12]
- (*end*)
- number*(2*Pi*I*integer -
- Log[Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
- k]])
- (* later 9 8 2021 *)
- (*start*)Clear[number, log1, log2, log3, log4, s, x, X, h, n, k];
- number = 120;
- integer = 0;
- m = 100;
- $MaxRootDegree = Round[Log[m]*number] + 10
- $MaxExtraPrecision = Round[Log[m]*number] + 50
- Sum[(-1)^(n + 1)*1/(E^(Log[n]))^s, {n, 1, m}]
- s = ParallelTable[
- number*(If[k == 1, Pi*I, 0] + 2*Pi*I*integer -
- Log[If[k == 1, -1, 1]*
- Root[Sum[(-1)^(n + 1)*#1^Round[Log[n]*number], {n, 1, m}] &,
- k]]), {k, 1, Round[Log[m]*number]}];
- Block[{$MaxExtraPrecision = 300},
- N[Sum[(-1)^(n + 1)*1/(E^(Round[Log[n]*number]/number))^s, {n, 1, m}],
- 20]]
- N[Round[%]]
- N[s]
- Sort[Re[%]]
- ListLinePlot[%]
- (*end*)
- (* start *)
- (* fungerande 27 12 2021 *)
- Clear[number, log1, log2, log3, log4];
- number = 12;
- log1 = 0
- log2 = Round[2/2*number]/number
- log3 = Round[2/3*number]/number
- log4 = Round[2/4*number]/number
- gcd = GCD[log1, log2, log3, log4]
- integer = 0;
- s = 1/gcd*(2*Pi*I*integer -
- Log[Root[#1^(log1/gcd) + #1^(log2/gcd) + #1^(log3/gcd) + #1^(log4/
- gcd) &, 1]])
- N[1 + 1/(E^(log2))^s + 1/(E^(log3))^s + 1/(E^(log4))^s]
- (* end *)
- "Output:"
- -2.22045*10^-16 + 1.11022*10^-16 I
- "Added 7 1 2023"
- (*start*)c = 100;
- x = N[Exp[-ZetaZero[1]/c], 100]
- Sum[(-1)^k*x^(Log[k]*c), {k, 1, Infinity}]
- (*end*)
- "I managed to run the program with the c=2;
- " c " should be greater than Im[ZetaZero[1]]/Pi
- but already c=3 is too large to make to program
- run to the end."
- (*start*)
- Clear[h, x, k, s, s1, nn, m, c];
- $MaxRootDegree = 2000;
- c = 2
- m = 10;(*m must be an even integer and greater than 4*)h = 200;
- gcd = GCD @@ Table[Round[c*Log[n]*h]/h, {n, 1, m}]
- Table[Round[c*Log[n]*h]/h, {n, 1, m}]/gcd
- r = 100;
- integer = 0;
- s = 1/gcd*(2*Pi*I*integer -
- Log[Root[
- Sum[(-1)^(n + 1) #1^(Round[c*Log[n]*h]/h/gcd), {n, 1, m}] &, r]])
- N[s, 80]
- N[Sum[(-1)^(n + 1)/(E^(c*Round[Log[n]*h]/h))^s, {n, 1, m}]]
- s1 = 1/gcd*(2*Pi*I*integer -
- Log[Root[
- polynomial =
- Sum[Sum[#1^k, {k, Round[c*Log[m - (2*q - 1)]*h]/h/gcd,
- Round[c*Log[m - (2*q - 2)]*h]/h/gcd - 1}], {q, 1, m/2}] &,
- r - 1]])
- N[s1, 80]
- N[Sum[(-1)^(n + 1)/(E^(Round[c*Log[n]*h]/h))^s1, {n, 1, m}]]
- (*end*)
- (*start*)
- m = 20;
- h = 200;
- sort = Sort[
- Flatten[Table[
- Table[k, {k, Round[c*Log[m - (2*q - 1)]*h]/h/gcd,
- Round[c*Log[m - (2*q - 2)]*h]/h/gcd - 1}], {q, 1, m/2}]]]
- "Plot of exponents of polynomial"
- ListLinePlot[sort]
- "Plot of coefficients of polynomial"
- ListPlot[Sum[
- Table[If[sort[[n]] == k, 1, 0], {k, 1, Max[sort]}], {n, 1,
- Length[sort]}], Filling -> 0]
- (*end*)
- (*start*)
- Plot[(1 + SquareWave[Exp[x]])/2, {x, 0, 2}, ExclusionsStyle -> Dotted]
- (*end*)
Advertisement
Add Comment
Please, Sign In to add comment