Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- combined_df <- data.frame(
- Date = as.Date(as.yearmon(index(combined_m))),
- coredata(combined_m)
- ) %>%
- dplyr::rename(
- pop_m = POP,
- pce_m = PCEC96,
- dsp_m = DSPIC96,
- umcsent_m = UMCSENT,
- csu_m = CSUSHPISA,
- totalsl_m = TOTALSL
- ) %>%
- dplyr::mutate(
- # transform to base units
- pop_m = pop_m * 1e3, # Thousands → persons
- pce_m = pce_m * 1e9, # Billions → dollars
- dsp_m = dsp_m * 1e9, # Billions → dollars
- totalsl_m = totalsl_m * 1e6, # Millions → dollars
- # per-capita transformation
- pce_pc = pce_m / pop_m,
- dsp_pc = dsp_m / pop_m,
- totalsl_pc = totalsl_m / pop_m,
- # log transformation
- log_pce_pc = log(pce_pc),
- log_dsp_pc = log(dsp_pc),
- log_totalsl_pc = log(totalsl_pc),
- # diff-log transformation
- dlog_pce_pc = c(NA, diff(log_pce_pc)),
- dlog_dsp_pc = c(NA, diff(log_dsp_pc)),
- dlog_totalsl_pc = c(NA, diff(log_totalsl_pc)),
- # moving average transformation
- dlog_dsp_pc_lag1 = lag(dlog_dsp_pc, 1),
- ma3_dlog_dsp_pc = rollmean(dlog_dsp_pc_lag1, k = 3, align = "right", fill = NA),
- # covid dummy
- covid_dummy = ifelse(Date >= as.Date("2020-03-01") & Date <= as.Date("2021-06-30"), 1, 0)
- ) %>%
- na.omit()
- model <- lm(dlog_pce_pc ~ ma3_dlog_dsp_pc * covid_dummy, data = combined_df)
- summary(model)
Advertisement
Add Comment
Please, Sign In to add comment