Guest User

Untitled

a guest
Oct 15th, 2018
71
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 0.29 KB | None | 0 0
  1. Var1 = tf.Variable(...)
  2. Var2 = tf.Variable(...)
  3. Y_hat = tf.matmul(Var1, Var2)
  4. loss = tf.reduce_sum(0.5*(target-Y_hat)**2)
  5.  
  6. # Will try to optimize for Var1 and Var2
  7. optimizer = tf.train.AdamOptimizer(0.001)
  8.  
  9. # For training on basis of Var1
  10. optimize_var1 = optimizer.minimize(loss, var_list=[Var1])
Add Comment
Please, Sign In to add comment