Advertisement
Guest User

Untitled

a guest
Apr 2nd, 2019
109
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
text 4.93 KB | None | 0 0
  1. *proving that integral of X^N = X^N+1/N+1
  2.  
  3. 9:: |- N e. NN
  4. 9a::nnaddcl |- ( ( N e. NN /\ 1 e. NN ) -> ( N + 1 ) e. NN )
  5. 9b::1nn |- 1 e. NN
  6. 9ba::ax1cn |- 1 e. CC
  7. 9c:9,9b,9a:mp2an |- ( N + 1 ) e. NN
  8. 9ca:9c:nnne0i |- ( N + 1 ) =/= 0
  9. 9d:9:nnrei |- N e. RR
  10. 9e:9d:recni |- N e. CC
  11. 9f:9:nnnn0i |- N e. NN0
  12. 9g:9c:nnnn0i |- ( N + 1 ) e. NN0
  13. 11:: |- A e. RR
  14. 12:: |- B e. RR
  15. 13:: |- A <_ B
  16. 14:: |- ph
  17.  
  18. *get the derivative of x^N+1
  19. 100::dvexp |- ( ( N + 1 ) e. NN -> ( CC _D ( x e. CC |-> ( x ^ ( N + 1 ) ) ) )
  20. = ( x e. CC |-> ( ( N + 1 ) x. ( x ^ ( ( N + 1 ) - 1 ) ) ) ) )
  21. 101:9c,100:ax-mp |- ( CC _D ( x e. CC |-> ( x ^ ( N + 1 ) ) ) )
  22. = ( x e. CC |-> ( ( N + 1 ) x. ( x ^ ( ( N + 1 ) - 1 ) ) ) )
  23. 103:9e,9ba:pncan3oi |- ( ( N + 1 ) - 1 ) = N
  24. 104:103:oveq2i |- ( x ^ ( ( N + 1 ) - 1 ) ) = ( x ^ N )
  25. *105:104,10:eqtr4i |- ( x ^ ( ( N + 1 ) - 1 ) ) = F
  26. 106:104:oveq2i |- ( ( N + 1 ) x. ( x ^ ( ( N + 1 ) - 1 ) ) ) = ( ( N + 1 ) x. ( x ^ N ) )
  27. 107:106:mpteq2i |- ( x e. CC |-> ( ( N + 1 ) x. ( x ^ ( ( N + 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( N + 1 ) x. ( x ^ N ) ) )
  28. 108:101,107:eqtri |- ( CC _D ( x e. CC |-> ( x ^ ( N + 1 ) ) ) ) = ( x e. CC |-> ( ( N + 1 ) x. ( x ^ N ) ) )
  29.  
  30. *conditions for restriction
  31. 110::reelprrecn |- RR e. { RR , CC }
  32. 111::iccssre |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR )
  33. 112:11,12,111:mp2an |- ( A [,] B ) C_ RR
  34. 113::axresscn |- RR C_ CC
  35. 114:112,113:sstri |- ( A [,] B ) C_ CC
  36. 115::expcl |- ( ( x e. CC /\ N e. NN0 ) -> ( x ^ N ) e. CC )
  37. 115a::expcl |- ( ( x e. CC /\ ( N + 1 ) e. NN0 ) -> ( x ^ ( N + 1 ) ) e. CC )
  38. 116:9f,115:mpan2 |- ( x e. CC -> ( x ^ N ) e. CC )
  39. 116a:9g,115a:mpan2 |- ( x e. CC -> ( x ^ ( N + 1 ) ) e. CC )
  40. 118:114:sseli |- ( x e. ( A [,] B ) -> x e. CC )
  41. 119:118,116:syl |- ( x e. ( A [,] B ) -> ( x ^ N ) e. CC )
  42. 119a:118,116a:syl |- ( x e. ( A [,] B ) -> ( x ^ ( N + 1 ) ) e. CC )
  43. 120:: |- ( A. x e. ( A [,] B ) ( x ^ N ) e. CC -> ( x ^ N ) : ( A [,] B ) --> CC )
  44. 155::fdm |- ( &C3 : &C1 --> &C2 -> dom &C3 = &C1 )
  45. 155a::fdm |- ( ( CC _D ( x ^ ( N + 1 ) ) ) : CC --> CC -> dom ( CC _D ( x ^ ( N + 1 ) ) ) = CC )
  46. *restrict this function to the reals
  47. 150a::dvres3 |- ( ( ( RR e. { RR , CC } /\ ( x ^ ( N + 1 ) ) : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ CC
  48. /\ RR C_ dom ( CC _D ( x ^ ( N + 1 ) ) ) ) ) -> ( RR _D ( ( x ^ ( N + 1 ) ) |` RR ) )
  49. = ( ( CC _D ( x ^ ( N + 1 ) ) ) |` RR ) )
  50. 150b:: |- ( RR _D ( ( x ^ ( N + 1 ) ) |` RR ) ) = ( ( CC _D ( x ^ ( N + 1 ) ) ) |` RR )
  51. 160:: |- ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) = ( ( ( N + 1 ) x. ( x ^ N ) ) ` t )
  52. 161:160:rgenw |- A. t e. ( A [,] B ) ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) = ( ( ( N + 1 ) x. ( x ^ N ) ) ` t )
  53.  
  54. *use the fundamental theorem of calculus
  55. d1:11:a1i |- ( ph -> A e. RR )
  56. d2:12:a1i |- ( ph -> B e. RR )
  57. d3:13:a1i |- ( ph -> A <_ B )
  58. !d4:: |- ( ph -> ( RR _D ( x ^ ( N + 1 ) ) ) e. ( ( A (,) B ) -cn-> CC ) )
  59. !d5:: |- ( ph -> ( RR _D ( x ^ ( N + 1 ) ) ) e. L^1 )
  60. !d6:: |- ( ph -> ( x ^ ( N + 1 ) ) e. ( ( A [,] B ) -cn-> CC ) )
  61. 200:d1,d2,d3,d4,d5,d6:ftc2
  62. |- ( ph -> S. ( A (,) B ) ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) _d t
  63. = ( ( ( x ^ ( N + 1 ) ) ` B ) - ( ( x ^ ( N + 1 ) ) ` A ) ) )
  64. 200a:14,200:ax-mp |- S. ( A (,) B ) ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) _d t
  65. = ( ( ( x ^ ( N + 1 ) ) ` B ) - ( ( x ^ ( N + 1 ) ) ` A ) )
  66. 201::itgeq2 |- ( A. t e. ( A [,] B ) ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) = ( ( ( N + 1 ) x. ( x ^ N ) ) ` t )
  67. -> S. ( A [,] B ) ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) _d t = S. ( A [,] B ) ( ( ( N + 1 ) x. ( x ^ N ) ) ` t ) _d t )
  68. 202:161,201:ax-mp |- S. ( A [,] B ) ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) _d t
  69. = S. ( A [,] B ) ( ( ( N + 1 ) x. ( x ^ N ) ) ` t ) _d t
  70.  
  71. d10:9e:a1i |- ( ph -> N e. CC )
  72. d11::1cnd |- ( ph -> 1 e. CC )
  73. d7:d10,d11:addcld |- ( ph -> ( N + 1 ) e. CC )
  74. !d14:: |- ( ph -> ( x ^ N ) : ( A [,] B ) --> CC )
  75. d8:d14:ffvelrnda |- ( ( ph /\ t e. ( A [,] B ) ) -> ( ( x ^ N ) ` t ) e. CC )
  76. !d9:: |- ( ph -> ( t e. ( A [,] B ) |-> ( ( x ^ N ) ` t ) ) e. L^1 )
  77. 210:d7,d8,d9:itgmulc2
  78. |- ( ph -> ( ( N + 1 ) x. S. ( A [,] B ) ( ( x ^ N ) ` t ) _d t )
  79. = S. ( A [,] B ) ( ( N + 1 ) x. ( ( x ^ N ) ` t ) ) _d t )
  80. 211:14,210:ax-mp |- ( ( N + 1 ) x. S. ( A [,] B ) ( ( x ^ N ) ` t ) _d t )
  81. = S. ( A [,] B ) ( ( N + 1 ) x. ( ( x ^ N ) ` t ) ) _d t
  82. 212:202,211: |- S. ( A [,] B ) ( ( RR _D ( x ^ ( N + 1 ) ) ) ` t ) _d t
  83. = ( ( N + 1 ) x. S. ( A [,] B ) ( ( x ^ N ) ` t ) _d t )
  84. 213:212,200a: |- ( ( N + 1 ) x. S. ( A [,] B ) ( x ^ N ) _d t )
  85. = ( ( ( x ^ ( N + 1 ) ) ` B ) - ( ( x ^ ( N + 1 ) ) ` A ) )
  86. d12:14,d7:ax-mp |- ( N + 1 ) e. CC
  87. !d13:: |- S. ( A [,] B ) ( x ^ N ) _d t e. CC
  88. 214:d12,d13,9ca,213:mvllmuli
  89. |- S. ( A [,] B ) ( x ^ N ) _d t = ( ( ( ( x ^ ( N + 1 ) ) ` B ) - ( ( x ^ ( N + 1 ) ) ` A ) ) / ( N + 1 ) )
  90. 215:: |- ( ( x ^ ( N + 1 ) ) ` B ) = ( B ^ ( N + 1 ) )
Advertisement
Add Comment
Please, Sign In to add comment
Advertisement