izukuboi

Untitled

Aug 7th, 2023
224
0
Never
Not a member of Pastebin yet? Sign Up, it unlocks many cool features!
Python 4.05 KB | Source Code | 0 0
  1. import neat
  2. from mcpi.minecraft import Minecraft
  3. from mcpi.vec3 import Vec3
  4. import numpy as np
  5.  
  6. # Connect to the Minecraft server (replace 'localhost' and '4711' with your server's IP and port)
  7. mc = Minecraft.create("localhost", 4711)
  8.  
  9. # Define the region you want to scan (replace these coordinates with your desired region)
  10. min_x, min_y, min_z = -10, 0, -10
  11. max_x, max_y, max_z = 10, 10, 10
  12.  
  13. # Function to check if a block is visible
  14. def is_block_visible(x, y, z):
  15.     player_x, player_y, player_z = mc.player.getPos()
  16.     max_distance = 10  # Adjust this value as needed for your use case
  17.     distance = ((x - player_x) ** 2 + (y - player_y) ** 2 + (z - player_z) ** 2) ** 0.5
  18.     return distance <= max_distance
  19.  
  20. # Function to scan blocks and return block data for visible blocks
  21. def scan_visible_blocks():
  22.     visible_blocks_data = []
  23.     for x in range(min_x, max_x + 1):
  24.         for y in range(min_y, max_y + 1):
  25.             for z in range(min_z, max_z + 1):
  26.                 if is_block_visible(x, y, z):
  27.                     block_data = mc.getBlockWithData(x, y, z)
  28.                     # Append the block data as a list or numpy array
  29.                     visible_blocks_data.append([block_data.id, block_data.data])
  30.     return np.array(visible_blocks_data)
  31.  
  32. # Function to simulate Minecraft controls based on NEAT output
  33. def control_minecraft(output):
  34.     # Map the output to Minecraft controls
  35.     if output == 0:
  36.         mc.player.setPos(0, 0, 0)  # Stop
  37.     elif output == 1:
  38.         mc.player.setPos(1, 0, 0)  # Move forward
  39.     elif output == 2:
  40.         mc.player.setPos(-1, 0, 0)  # Move backward
  41.     elif output == 3:
  42.         mc.player.setPos(0, 0, 1)  # Move right
  43.     elif output == 4:
  44.         mc.player.setPos(0, 0, -1)  # Move left
  45.  
  46. # Fitness function to evaluate the performance of the neural network
  47. def evaluate_genome(genome, config):
  48.     # Step 1: Data Collection (scan visible blocks)
  49.     block_data = scan_visible_blocks()
  50.  
  51.     # Step 2: Data Preprocessing (if needed)
  52.     # Normalize the block data using StandardScaler
  53.  
  54.     # Step 3: Define Neural Network Architecture
  55.     input_shape = (block_data.shape[1],)  # Number of features in the input (block data)
  56.     output_shape = 5  # Number of possible controls (stop, forward, backward, left, right)
  57.  
  58.     # Step 4: Create and compile the Neural Network Model using the NEAT genome
  59.     model = neat.nn.FeedForwardNetwork.create(genome, config)
  60.     model.compile(loss='mean_squared_error', optimizer='adam')
  61.  
  62.     # Step 5: Inference (use the model to generate controls)
  63.     # Replace this with actual inference logic using the model's prediction
  64.     output = np.random.randint(0, output_shape)
  65.     control_minecraft(output)
  66.  
  67.     # Calculate the fitness based on how well the network performs the task
  68.     fitness = 0  # You need to define how to evaluate the fitness based on the task
  69.  
  70.     return fitness
  71.  
  72. def main(config_file):
  73.     # Load NEAT configuration
  74.     config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
  75.                          neat.DefaultSpeciesSet, neat.DefaultStagnation,
  76.                          config_file)
  77.  
  78.     # Create the NEAT population
  79.     population = neat.Population(config)
  80.  
  81.     # Add a reporter to show the progress of training
  82.     reporter = neat.StdOutReporter(True)
  83.     population.add_reporter(reporter)
  84.     statistics = neat.StatisticsReporter()
  85.     population.add_reporter(statistics)
  86.  
  87.     # Run NEAT for the specified number of generations
  88.     winner = population.run(evaluate_genome, 10)  # Replace '10' with the desired number of generations
  89.  
  90.     # Display the best genome
  91.     print('\nBest genome:\n{!s}'.format(winner))
  92.  
  93.     # Get the neural network from the best genome
  94.     best_model = neat.nn.FeedForwardNetwork.create(winner, config)
  95.  
  96.     # Use the best model for Minecraft control
  97.     # You can implement the control logic here using the model's prediction
  98.  
  99. if __name__ == '__main__':
  100.     local_dir = os.path.dirname(__file__)
  101.     config_file = os.path.join(local_dir, 'neat_config.txt')
  102.     main(config_file)
  103.  
Advertisement
Add Comment
Please, Sign In to add comment