Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import neat
- from mcpi.minecraft import Minecraft
- from mcpi.vec3 import Vec3
- import numpy as np
- # Connect to the Minecraft server (replace 'localhost' and '4711' with your server's IP and port)
- mc = Minecraft.create("localhost", 4711)
- # Define the region you want to scan (replace these coordinates with your desired region)
- min_x, min_y, min_z = -10, 0, -10
- max_x, max_y, max_z = 10, 10, 10
- # Function to check if a block is visible
- def is_block_visible(x, y, z):
- player_x, player_y, player_z = mc.player.getPos()
- max_distance = 10 # Adjust this value as needed for your use case
- distance = ((x - player_x) ** 2 + (y - player_y) ** 2 + (z - player_z) ** 2) ** 0.5
- return distance <= max_distance
- # Function to scan blocks and return block data for visible blocks
- def scan_visible_blocks():
- visible_blocks_data = []
- for x in range(min_x, max_x + 1):
- for y in range(min_y, max_y + 1):
- for z in range(min_z, max_z + 1):
- if is_block_visible(x, y, z):
- block_data = mc.getBlockWithData(x, y, z)
- # Append the block data as a list or numpy array
- visible_blocks_data.append([block_data.id, block_data.data])
- return np.array(visible_blocks_data)
- # Function to simulate Minecraft controls based on NEAT output
- def control_minecraft(output):
- # Map the output to Minecraft controls
- if output == 0:
- mc.player.setPos(0, 0, 0) # Stop
- elif output == 1:
- mc.player.setPos(1, 0, 0) # Move forward
- elif output == 2:
- mc.player.setPos(-1, 0, 0) # Move backward
- elif output == 3:
- mc.player.setPos(0, 0, 1) # Move right
- elif output == 4:
- mc.player.setPos(0, 0, -1) # Move left
- # Fitness function to evaluate the performance of the neural network
- def evaluate_genome(genome, config):
- # Step 1: Data Collection (scan visible blocks)
- block_data = scan_visible_blocks()
- # Step 2: Data Preprocessing (if needed)
- # Normalize the block data using StandardScaler
- # Step 3: Define Neural Network Architecture
- input_shape = (block_data.shape[1],) # Number of features in the input (block data)
- output_shape = 5 # Number of possible controls (stop, forward, backward, left, right)
- # Step 4: Create and compile the Neural Network Model using the NEAT genome
- model = neat.nn.FeedForwardNetwork.create(genome, config)
- model.compile(loss='mean_squared_error', optimizer='adam')
- # Step 5: Inference (use the model to generate controls)
- # Replace this with actual inference logic using the model's prediction
- output = np.random.randint(0, output_shape)
- control_minecraft(output)
- # Calculate the fitness based on how well the network performs the task
- fitness = 0 # You need to define how to evaluate the fitness based on the task
- return fitness
- def main(config_file):
- # Load NEAT configuration
- config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
- neat.DefaultSpeciesSet, neat.DefaultStagnation,
- config_file)
- # Create the NEAT population
- population = neat.Population(config)
- # Add a reporter to show the progress of training
- reporter = neat.StdOutReporter(True)
- population.add_reporter(reporter)
- statistics = neat.StatisticsReporter()
- population.add_reporter(statistics)
- # Run NEAT for the specified number of generations
- winner = population.run(evaluate_genome, 10) # Replace '10' with the desired number of generations
- # Display the best genome
- print('\nBest genome:\n{!s}'.format(winner))
- # Get the neural network from the best genome
- best_model = neat.nn.FeedForwardNetwork.create(winner, config)
- # Use the best model for Minecraft control
- # You can implement the control logic here using the model's prediction
- if __name__ == '__main__':
- local_dir = os.path.dirname(__file__)
- config_file = os.path.join(local_dir, 'neat_config.txt')
- main(config_file)
Advertisement
Add Comment
Please, Sign In to add comment