Not a member of Pastebin yet?
Sign Up,
it unlocks many cool features!
- import argparse
- import cv2
- import glob
- import numpy as np
- import os
- import torch
- from facexlib.utils.face_restoration_helper import FaceRestoreHelper
- from torchvision.transforms.functional import normalize
- from archs.gfpganv1_arch import GFPGANv1
- from basicsr.utils import img2tensor, imwrite, tensor2img
- def restoration(gfpgan,
- face_helper,
- img_path,
- save_root,
- has_aligned=False,
- only_center_face=True,
- suffix=None,
- paste_back=False):
- # read image
- img_name = os.path.basename(img_path)
- print(f'Processing {img_name} ...')
- basename, _ = os.path.splitext(img_name)
- input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
- face_helper.clean_all()
- if has_aligned:
- input_img = cv2.resize(input_img, (512, 512))
- face_helper.cropped_faces = [input_img]
- else:
- input_img = cv2.resize(input_img, (512, 512))
- face_helper.cropped_faces = [input_img]
- # face restoration
- for idx, cropped_face in enumerate(face_helper.cropped_faces):
- # prepare data
- cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
- normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
- cropped_face_t = cropped_face_t.unsqueeze(0).to('cuda')
- try:
- with torch.no_grad():
- output = gfpgan(cropped_face_t, return_rgb=False)[0]
- # convert to image
- restored_face = tensor2img(output.squeeze(0), rgb2bgr=True, min_max=(-1, 1))
- except RuntimeError as error:
- print(f'\tFailed inference for GFPGAN: {error}.')
- restored_face = cropped_face
- restored_face = restored_face.astype('uint8')
- face_helper.add_restored_face(restored_face)
- if suffix is not None:
- save_face_name = f'{basename}_{idx:02d}_{suffix}.png'
- else:
- save_face_name = f'{basename}_{idx:02d}.png'
- save_restore_path = os.path.join(save_root, 'restored_faces', save_face_name)
- imwrite(restored_face, save_restore_path)
- # save cmp image
- cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
- imwrite(cmp_img, os.path.join(save_root, 'cmp', f'{basename}_{idx:02d}.png'))
- if not has_aligned and paste_back:
- face_helper.get_inverse_affine(None)
- save_restore_path = os.path.join(save_root, 'restored_imgs', img_name)
- # paste each restored face to the input image
- face_helper.paste_faces_to_input_image(save_restore_path)
- if __name__ == '__main__':
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
- parser = argparse.ArgumentParser()
- parser.add_argument('--upscale_factor', type=int, default=1)
- parser.add_argument('--model_path', type=str, default='experiments/pretrained_models/GFPGANv1.pth')
- parser.add_argument('--test_path', type=str, default='inputs/whole_imgs')
- parser.add_argument('--suffix', type=str, default=None, help='Suffix of the restored faces')
- parser.add_argument('--only_center_face', action='store_true')
- parser.add_argument('--aligned', action='store_true')
- parser.add_argument('--paste_back', action='store_true')
- args = parser.parse_args()
- if args.test_path.endswith('/'):
- args.test_path = args.test_path[:-1]
- save_root = 'results/'
- os.makedirs(save_root, exist_ok=True)
- # initialize the GFP-GAN
- gfpgan = GFPGANv1(
- out_size=512,
- num_style_feat=512,
- channel_multiplier=1,
- decoder_load_path=None,
- fix_decoder=True,
- # for stylegan decoder
- num_mlp=8,
- input_is_latent=True,
- different_w=True,
- narrow=1,
- sft_half=True)
- gfpgan.to(device)
- checkpoint = torch.load(args.model_path, map_location=lambda storage, loc: storage)
- gfpgan.load_state_dict(checkpoint['params_ema'])
- gfpgan.eval()
- # initialize face helper
- face_helper = FaceRestoreHelper(
- upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png')
- img_list = sorted(glob.glob(os.path.join(args.test_path, '*')))
- for img_path in img_list:
- restoration(
- gfpgan,
- face_helper,
- img_path,
- save_root,
- has_aligned=args.aligned,
- only_center_face=args.only_center_face,
- suffix=args.suffix,
- paste_back=args.paste_back)
- print('Results are in the <results> folder.')
Advertisement
Add Comment
Please, Sign In to add comment